1 |
siliconforks |
332 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
|
|
* |
3 |
|
|
* ***** BEGIN LICENSE BLOCK ***** |
4 |
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
|
|
* |
6 |
|
|
* The contents of this file are subject to the Mozilla Public License Version |
7 |
|
|
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
|
|
* the License. You may obtain a copy of the License at |
9 |
|
|
* http://www.mozilla.org/MPL/ |
10 |
|
|
* |
11 |
|
|
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
|
|
* for the specific language governing rights and limitations under the |
14 |
|
|
* License. |
15 |
|
|
* |
16 |
|
|
* The Original Code is Mozilla Communicator client code, released |
17 |
|
|
* March 31, 1998. |
18 |
|
|
* |
19 |
|
|
* The Initial Developer of the Original Code is |
20 |
|
|
* Netscape Communications Corporation. |
21 |
|
|
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
|
|
* the Initial Developer. All Rights Reserved. |
23 |
|
|
* |
24 |
|
|
* Contributor(s): |
25 |
|
|
* |
26 |
|
|
* Alternatively, the contents of this file may be used under the terms of |
27 |
|
|
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
|
|
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
|
|
* of those above. If you wish to allow use of your version of this file only |
31 |
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
|
|
* use your version of this file under the terms of the MPL, indicate your |
33 |
|
|
* decision by deleting the provisions above and replace them with the notice |
34 |
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
|
|
* the provisions above, a recipient may use your version of this file under |
36 |
|
|
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
|
|
* |
38 |
|
|
* ***** END LICENSE BLOCK ***** */ |
39 |
|
|
|
40 |
|
|
/* |
41 |
|
|
* Portable double to alphanumeric string and back converters. |
42 |
|
|
*/ |
43 |
|
|
#include "jsstddef.h" |
44 |
|
|
#include "jslibmath.h" |
45 |
|
|
#include "jstypes.h" |
46 |
|
|
#include "jsdtoa.h" |
47 |
|
|
#include "jsprf.h" |
48 |
|
|
#include "jsutil.h" /* Added by JSIFY */ |
49 |
|
|
#include "jspubtd.h" |
50 |
|
|
#include "jsnum.h" |
51 |
|
|
#include "jsbit.h" |
52 |
|
|
|
53 |
|
|
#ifdef JS_THREADSAFE |
54 |
|
|
#include "jslock.h" |
55 |
|
|
#endif |
56 |
|
|
|
57 |
|
|
#ifdef IS_LITTLE_ENDIAN |
58 |
|
|
#define IEEE_8087 |
59 |
|
|
#else |
60 |
|
|
#define IEEE_MC68k |
61 |
|
|
#endif |
62 |
|
|
|
63 |
|
|
#ifndef Long |
64 |
|
|
#define Long int32 |
65 |
|
|
#endif |
66 |
|
|
|
67 |
|
|
#ifndef ULong |
68 |
|
|
#define ULong uint32 |
69 |
|
|
#endif |
70 |
|
|
|
71 |
|
|
/* |
72 |
|
|
#ifndef Llong |
73 |
|
|
#define Llong JSInt64 |
74 |
|
|
#endif |
75 |
|
|
|
76 |
|
|
#ifndef ULlong |
77 |
|
|
#define ULlong JSUint64 |
78 |
|
|
#endif |
79 |
|
|
*/ |
80 |
|
|
|
81 |
|
|
#ifdef JS_THREADSAFE |
82 |
|
|
static PRLock *dtoalock; |
83 |
|
|
static JSBool _dtoainited = JS_FALSE; |
84 |
|
|
|
85 |
|
|
#define LOCK_DTOA() PR_Lock(dtoalock); |
86 |
|
|
#define UNLOCK_DTOA() PR_Unlock(dtoalock) |
87 |
|
|
#else |
88 |
|
|
#define LOCK_DTOA() |
89 |
|
|
#define UNLOCK_DTOA() |
90 |
|
|
#endif |
91 |
|
|
#include "dtoa.c" |
92 |
|
|
|
93 |
|
|
JS_FRIEND_API(JSBool) |
94 |
|
|
js_InitDtoa() |
95 |
|
|
{ |
96 |
|
|
#ifdef JS_THREADSAFE |
97 |
|
|
if (!_dtoainited) { |
98 |
|
|
dtoalock = PR_NewLock(); |
99 |
|
|
JS_ASSERT(dtoalock); |
100 |
|
|
_dtoainited = JS_TRUE; |
101 |
|
|
} |
102 |
|
|
|
103 |
|
|
return (dtoalock != 0); |
104 |
|
|
#else |
105 |
|
|
return JS_TRUE; |
106 |
|
|
#endif |
107 |
|
|
} |
108 |
|
|
|
109 |
|
|
JS_FRIEND_API(void) |
110 |
|
|
js_FinishDtoa() |
111 |
|
|
{ |
112 |
|
|
#ifdef JS_THREADSAFE |
113 |
|
|
if (_dtoainited) { |
114 |
|
|
PR_DestroyLock(dtoalock); |
115 |
|
|
dtoalock = NULL; |
116 |
|
|
_dtoainited = JS_FALSE; |
117 |
|
|
} |
118 |
|
|
#endif |
119 |
|
|
} |
120 |
|
|
|
121 |
|
|
/* Mapping of JSDToStrMode -> js_dtoa mode */ |
122 |
|
|
static const uint8 dtoaModes[] = { |
123 |
|
|
0, /* DTOSTR_STANDARD */ |
124 |
|
|
0, /* DTOSTR_STANDARD_EXPONENTIAL, */ |
125 |
|
|
3, /* DTOSTR_FIXED, */ |
126 |
|
|
2, /* DTOSTR_EXPONENTIAL, */ |
127 |
|
|
2}; /* DTOSTR_PRECISION */ |
128 |
|
|
|
129 |
|
|
JS_FRIEND_API(double) |
130 |
|
|
JS_strtod(const char *s00, char **se, int *err) |
131 |
|
|
{ |
132 |
|
|
double retval; |
133 |
|
|
if (err) |
134 |
|
|
*err = 0; |
135 |
|
|
LOCK_DTOA(); |
136 |
|
|
retval = _strtod(s00, se); |
137 |
|
|
UNLOCK_DTOA(); |
138 |
|
|
return retval; |
139 |
|
|
} |
140 |
|
|
|
141 |
|
|
JS_FRIEND_API(char *) |
142 |
|
|
JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double dinput) |
143 |
|
|
{ |
144 |
|
|
U d; |
145 |
|
|
int decPt; /* Offset of decimal point from first digit */ |
146 |
|
|
int sign; /* Nonzero if the sign bit was set in d */ |
147 |
|
|
int nDigits; /* Number of significand digits returned by js_dtoa */ |
148 |
|
|
char *numBegin; /* Pointer to the digits returned by js_dtoa */ |
149 |
|
|
char *numEnd = 0; /* Pointer past the digits returned by js_dtoa */ |
150 |
|
|
|
151 |
|
|
JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL |
152 |
|
|
? DTOSTR_STANDARD_BUFFER_SIZE |
153 |
|
|
: DTOSTR_VARIABLE_BUFFER_SIZE(precision))); |
154 |
|
|
|
155 |
|
|
/* |
156 |
|
|
* Change mode here rather than below because the buffer may not be large |
157 |
|
|
* enough to hold a large integer. |
158 |
|
|
*/ |
159 |
|
|
if (mode == DTOSTR_FIXED && (dinput >= 1e21 || dinput <= -1e21)) |
160 |
|
|
mode = DTOSTR_STANDARD; |
161 |
|
|
|
162 |
|
|
LOCK_DTOA(); |
163 |
|
|
dval(d) = dinput; |
164 |
|
|
numBegin = dtoa(d, dtoaModes[mode], precision, &decPt, &sign, &numEnd); |
165 |
|
|
if (!numBegin) { |
166 |
|
|
UNLOCK_DTOA(); |
167 |
|
|
return NULL; |
168 |
|
|
} |
169 |
|
|
|
170 |
|
|
nDigits = numEnd - numBegin; |
171 |
|
|
JS_ASSERT((size_t) nDigits <= bufferSize - 2); |
172 |
|
|
if ((size_t) nDigits > bufferSize - 2) { |
173 |
|
|
UNLOCK_DTOA(); |
174 |
|
|
return NULL; |
175 |
|
|
} |
176 |
|
|
|
177 |
|
|
memcpy(buffer + 2, numBegin, nDigits); |
178 |
|
|
freedtoa(numBegin); |
179 |
|
|
UNLOCK_DTOA(); |
180 |
|
|
numBegin = buffer + 2; /* +2 leaves space for sign and/or decimal point */ |
181 |
|
|
numEnd = numBegin + nDigits; |
182 |
|
|
*numEnd = '\0'; |
183 |
|
|
|
184 |
|
|
/* If Infinity, -Infinity, or NaN, return the string regardless of mode. */ |
185 |
|
|
if (decPt != 9999) { |
186 |
|
|
JSBool exponentialNotation = JS_FALSE; |
187 |
|
|
int minNDigits = 0; /* Min number of significant digits required */ |
188 |
|
|
char *p; |
189 |
|
|
char *q; |
190 |
|
|
|
191 |
|
|
switch (mode) { |
192 |
|
|
case DTOSTR_STANDARD: |
193 |
|
|
if (decPt < -5 || decPt > 21) |
194 |
|
|
exponentialNotation = JS_TRUE; |
195 |
|
|
else |
196 |
|
|
minNDigits = decPt; |
197 |
|
|
break; |
198 |
|
|
|
199 |
|
|
case DTOSTR_FIXED: |
200 |
|
|
if (precision >= 0) |
201 |
|
|
minNDigits = decPt + precision; |
202 |
|
|
else |
203 |
|
|
minNDigits = decPt; |
204 |
|
|
break; |
205 |
|
|
|
206 |
|
|
case DTOSTR_EXPONENTIAL: |
207 |
|
|
JS_ASSERT(precision > 0); |
208 |
|
|
minNDigits = precision; |
209 |
|
|
/* Fall through */ |
210 |
|
|
case DTOSTR_STANDARD_EXPONENTIAL: |
211 |
|
|
exponentialNotation = JS_TRUE; |
212 |
|
|
break; |
213 |
|
|
|
214 |
|
|
case DTOSTR_PRECISION: |
215 |
|
|
JS_ASSERT(precision > 0); |
216 |
|
|
minNDigits = precision; |
217 |
|
|
if (decPt < -5 || decPt > precision) |
218 |
|
|
exponentialNotation = JS_TRUE; |
219 |
|
|
break; |
220 |
|
|
} |
221 |
|
|
|
222 |
|
|
/* If the number has fewer than minNDigits, end-pad it with zeros. */ |
223 |
|
|
if (nDigits < minNDigits) { |
224 |
|
|
p = numBegin + minNDigits; |
225 |
|
|
nDigits = minNDigits; |
226 |
|
|
do { |
227 |
|
|
*numEnd++ = '0'; |
228 |
|
|
} while (numEnd != p); |
229 |
|
|
*numEnd = '\0'; |
230 |
|
|
} |
231 |
|
|
|
232 |
|
|
if (exponentialNotation) { |
233 |
|
|
/* Insert a decimal point if more than one significand digit */ |
234 |
|
|
if (nDigits != 1) { |
235 |
|
|
numBegin--; |
236 |
|
|
numBegin[0] = numBegin[1]; |
237 |
|
|
numBegin[1] = '.'; |
238 |
|
|
} |
239 |
|
|
JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1); |
240 |
|
|
} else if (decPt != nDigits) { |
241 |
|
|
/* Some kind of a fraction in fixed notation */ |
242 |
|
|
JS_ASSERT(decPt <= nDigits); |
243 |
|
|
if (decPt > 0) { |
244 |
|
|
/* dd...dd . dd...dd */ |
245 |
|
|
p = --numBegin; |
246 |
|
|
do { |
247 |
|
|
*p = p[1]; |
248 |
|
|
p++; |
249 |
|
|
} while (--decPt); |
250 |
|
|
*p = '.'; |
251 |
|
|
} else { |
252 |
|
|
/* 0 . 00...00dd...dd */ |
253 |
|
|
p = numEnd; |
254 |
|
|
numEnd += 1 - decPt; |
255 |
|
|
q = numEnd; |
256 |
|
|
JS_ASSERT(numEnd < buffer + bufferSize); |
257 |
|
|
*numEnd = '\0'; |
258 |
|
|
while (p != numBegin) |
259 |
|
|
*--q = *--p; |
260 |
|
|
for (p = numBegin + 1; p != q; p++) |
261 |
|
|
*p = '0'; |
262 |
|
|
*numBegin = '.'; |
263 |
|
|
*--numBegin = '0'; |
264 |
|
|
} |
265 |
|
|
} |
266 |
|
|
} |
267 |
|
|
|
268 |
|
|
/* If negative and neither -0.0 nor NaN, output a leading '-'. */ |
269 |
|
|
if (sign && |
270 |
|
|
!(word0(d) == Sign_bit && word1(d) == 0) && |
271 |
|
|
!((word0(d) & Exp_mask) == Exp_mask && |
272 |
|
|
(word1(d) || (word0(d) & Frac_mask)))) { |
273 |
|
|
*--numBegin = '-'; |
274 |
|
|
} |
275 |
|
|
return numBegin; |
276 |
|
|
} |
277 |
|
|
|
278 |
|
|
|
279 |
|
|
/* Let b = floor(b / divisor), and return the remainder. b must be nonnegative. |
280 |
|
|
* divisor must be between 1 and 65536. |
281 |
|
|
* This function cannot run out of memory. */ |
282 |
|
|
static uint32 |
283 |
|
|
divrem(Bigint *b, uint32 divisor) |
284 |
|
|
{ |
285 |
|
|
int32 n = b->wds; |
286 |
|
|
uint32 remainder = 0; |
287 |
|
|
ULong *bx; |
288 |
|
|
ULong *bp; |
289 |
|
|
|
290 |
|
|
JS_ASSERT(divisor > 0 && divisor <= 65536); |
291 |
|
|
|
292 |
|
|
if (!n) |
293 |
|
|
return 0; /* b is zero */ |
294 |
|
|
bx = b->x; |
295 |
|
|
bp = bx + n; |
296 |
|
|
do { |
297 |
|
|
ULong a = *--bp; |
298 |
|
|
ULong dividend = remainder << 16 | a >> 16; |
299 |
|
|
ULong quotientHi = dividend / divisor; |
300 |
|
|
ULong quotientLo; |
301 |
|
|
|
302 |
|
|
remainder = dividend - quotientHi*divisor; |
303 |
|
|
JS_ASSERT(quotientHi <= 0xFFFF && remainder < divisor); |
304 |
|
|
dividend = remainder << 16 | (a & 0xFFFF); |
305 |
|
|
quotientLo = dividend / divisor; |
306 |
|
|
remainder = dividend - quotientLo*divisor; |
307 |
|
|
JS_ASSERT(quotientLo <= 0xFFFF && remainder < divisor); |
308 |
|
|
*bp = quotientHi << 16 | quotientLo; |
309 |
|
|
} while (bp != bx); |
310 |
|
|
/* Decrease the size of the number if its most significant word is now zero. */ |
311 |
|
|
if (bx[n-1] == 0) |
312 |
|
|
b->wds--; |
313 |
|
|
return remainder; |
314 |
|
|
} |
315 |
|
|
|
316 |
|
|
/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */ |
317 |
|
|
static uint32 quorem2(Bigint *b, int32 k) |
318 |
|
|
{ |
319 |
|
|
ULong mask; |
320 |
|
|
ULong result; |
321 |
|
|
ULong *bx, *bxe; |
322 |
|
|
int32 w; |
323 |
|
|
int32 n = k >> 5; |
324 |
|
|
k &= 0x1F; |
325 |
|
|
mask = (1<<k) - 1; |
326 |
|
|
|
327 |
|
|
w = b->wds - n; |
328 |
|
|
if (w <= 0) |
329 |
|
|
return 0; |
330 |
|
|
JS_ASSERT(w <= 2); |
331 |
|
|
bx = b->x; |
332 |
|
|
bxe = bx + n; |
333 |
|
|
result = *bxe >> k; |
334 |
|
|
*bxe &= mask; |
335 |
|
|
if (w == 2) { |
336 |
|
|
JS_ASSERT(!(bxe[1] & ~mask)); |
337 |
|
|
if (k) |
338 |
|
|
result |= bxe[1] << (32 - k); |
339 |
|
|
} |
340 |
|
|
n++; |
341 |
|
|
while (!*bxe && bxe != bx) { |
342 |
|
|
n--; |
343 |
|
|
bxe--; |
344 |
|
|
} |
345 |
|
|
b->wds = n; |
346 |
|
|
return result; |
347 |
|
|
} |
348 |
|
|
|
349 |
|
|
|
350 |
|
|
/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce, |
351 |
|
|
* which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of |
352 |
|
|
* the output string and malloc fewer bytes depending on d and base, but why bother? */ |
353 |
|
|
#define DTOBASESTR_BUFFER_SIZE 1078 |
354 |
|
|
#define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit))) |
355 |
|
|
|
356 |
|
|
JS_FRIEND_API(char *) |
357 |
|
|
JS_dtobasestr(int base, double dinput) |
358 |
|
|
{ |
359 |
|
|
U d; |
360 |
|
|
char *buffer; /* The output string */ |
361 |
|
|
char *p; /* Pointer to current position in the buffer */ |
362 |
|
|
char *pInt; /* Pointer to the beginning of the integer part of the string */ |
363 |
|
|
char *q; |
364 |
|
|
uint32 digit; |
365 |
|
|
U di; /* d truncated to an integer */ |
366 |
|
|
U df; /* The fractional part of d */ |
367 |
|
|
|
368 |
|
|
JS_ASSERT(base >= 2 && base <= 36); |
369 |
|
|
|
370 |
|
|
dval(d) = dinput; |
371 |
|
|
buffer = (char*) malloc(DTOBASESTR_BUFFER_SIZE); |
372 |
|
|
if (buffer) { |
373 |
|
|
p = buffer; |
374 |
|
|
if (dval(d) < 0.0 |
375 |
|
|
#if defined(XP_WIN) || defined(XP_OS2) |
376 |
|
|
&& !((word0(d) & Exp_mask) == Exp_mask && ((word0(d) & Frac_mask) || word1(d))) /* Visual C++ doesn't know how to compare against NaN */ |
377 |
|
|
#endif |
378 |
|
|
) { |
379 |
|
|
*p++ = '-'; |
380 |
|
|
dval(d) = -dval(d); |
381 |
|
|
} |
382 |
|
|
|
383 |
|
|
/* Check for Infinity and NaN */ |
384 |
|
|
if ((word0(d) & Exp_mask) == Exp_mask) { |
385 |
|
|
strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN"); |
386 |
|
|
return buffer; |
387 |
|
|
} |
388 |
|
|
|
389 |
|
|
LOCK_DTOA(); |
390 |
|
|
/* Output the integer part of d with the digits in reverse order. */ |
391 |
|
|
pInt = p; |
392 |
siliconforks |
399 |
dval(di) = floor(dval(d)); |
393 |
siliconforks |
332 |
if (dval(di) <= 4294967295.0) { |
394 |
|
|
uint32 n = (uint32)dval(di); |
395 |
|
|
if (n) |
396 |
|
|
do { |
397 |
|
|
uint32 m = n / base; |
398 |
|
|
digit = n - m*base; |
399 |
|
|
n = m; |
400 |
|
|
JS_ASSERT(digit < (uint32)base); |
401 |
|
|
*p++ = BASEDIGIT(digit); |
402 |
|
|
} while (n); |
403 |
|
|
else *p++ = '0'; |
404 |
|
|
} else { |
405 |
|
|
int e; |
406 |
|
|
int bits; /* Number of significant bits in di; not used. */ |
407 |
|
|
Bigint *b = d2b(di, &e, &bits); |
408 |
|
|
if (!b) |
409 |
|
|
goto nomem1; |
410 |
|
|
b = lshift(b, e); |
411 |
|
|
if (!b) { |
412 |
|
|
nomem1: |
413 |
|
|
Bfree(b); |
414 |
|
|
UNLOCK_DTOA(); |
415 |
|
|
free(buffer); |
416 |
|
|
return NULL; |
417 |
|
|
} |
418 |
|
|
do { |
419 |
|
|
digit = divrem(b, base); |
420 |
|
|
JS_ASSERT(digit < (uint32)base); |
421 |
|
|
*p++ = BASEDIGIT(digit); |
422 |
|
|
} while (b->wds); |
423 |
|
|
Bfree(b); |
424 |
|
|
} |
425 |
|
|
/* Reverse the digits of the integer part of d. */ |
426 |
|
|
q = p-1; |
427 |
|
|
while (q > pInt) { |
428 |
|
|
char ch = *pInt; |
429 |
|
|
*pInt++ = *q; |
430 |
|
|
*q-- = ch; |
431 |
|
|
} |
432 |
|
|
|
433 |
|
|
dval(df) = dval(d) - dval(di); |
434 |
|
|
if (dval(df) != 0.0) { |
435 |
|
|
/* We have a fraction. */ |
436 |
|
|
int e, bbits; |
437 |
|
|
int32 s2, done; |
438 |
|
|
Bigint *b, *s, *mlo, *mhi; |
439 |
|
|
|
440 |
|
|
b = s = mlo = mhi = NULL; |
441 |
|
|
|
442 |
|
|
*p++ = '.'; |
443 |
|
|
b = d2b(df, &e, &bbits); |
444 |
|
|
if (!b) { |
445 |
|
|
nomem2: |
446 |
|
|
Bfree(b); |
447 |
|
|
Bfree(s); |
448 |
|
|
if (mlo != mhi) |
449 |
|
|
Bfree(mlo); |
450 |
|
|
Bfree(mhi); |
451 |
|
|
UNLOCK_DTOA(); |
452 |
|
|
free(buffer); |
453 |
|
|
return NULL; |
454 |
|
|
} |
455 |
|
|
JS_ASSERT(e < 0); |
456 |
|
|
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */ |
457 |
|
|
|
458 |
|
|
s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1); |
459 |
|
|
#ifndef Sudden_Underflow |
460 |
|
|
if (!s2) |
461 |
|
|
s2 = -1; |
462 |
|
|
#endif |
463 |
|
|
s2 += Bias + P; |
464 |
|
|
/* 1/2^s2 = (nextDouble(d) - d)/2 */ |
465 |
|
|
JS_ASSERT(-s2 < e); |
466 |
|
|
mlo = i2b(1); |
467 |
|
|
if (!mlo) |
468 |
|
|
goto nomem2; |
469 |
|
|
mhi = mlo; |
470 |
|
|
if (!word1(d) && !(word0(d) & Bndry_mask) |
471 |
|
|
#ifndef Sudden_Underflow |
472 |
|
|
&& word0(d) & (Exp_mask & Exp_mask << 1) |
473 |
|
|
#endif |
474 |
|
|
) { |
475 |
|
|
/* The special case. Here we want to be within a quarter of the last input |
476 |
|
|
significant digit instead of one half of it when the output string's value is less than d. */ |
477 |
|
|
s2 += Log2P; |
478 |
|
|
mhi = i2b(1<<Log2P); |
479 |
|
|
if (!mhi) |
480 |
|
|
goto nomem2; |
481 |
|
|
} |
482 |
|
|
b = lshift(b, e + s2); |
483 |
|
|
if (!b) |
484 |
|
|
goto nomem2; |
485 |
|
|
s = i2b(1); |
486 |
|
|
if (!s) |
487 |
|
|
goto nomem2; |
488 |
|
|
s = lshift(s, s2); |
489 |
|
|
if (!s) |
490 |
|
|
goto nomem2; |
491 |
|
|
/* At this point we have the following: |
492 |
|
|
* s = 2^s2; |
493 |
|
|
* 1 > df = b/2^s2 > 0; |
494 |
|
|
* (d - prevDouble(d))/2 = mlo/2^s2; |
495 |
|
|
* (nextDouble(d) - d)/2 = mhi/2^s2. */ |
496 |
|
|
|
497 |
|
|
done = JS_FALSE; |
498 |
|
|
do { |
499 |
|
|
int32 j, j1; |
500 |
|
|
Bigint *delta; |
501 |
|
|
|
502 |
|
|
b = multadd(b, base, 0); |
503 |
|
|
if (!b) |
504 |
|
|
goto nomem2; |
505 |
|
|
digit = quorem2(b, s2); |
506 |
|
|
if (mlo == mhi) { |
507 |
|
|
mlo = mhi = multadd(mlo, base, 0); |
508 |
|
|
if (!mhi) |
509 |
|
|
goto nomem2; |
510 |
|
|
} |
511 |
|
|
else { |
512 |
|
|
mlo = multadd(mlo, base, 0); |
513 |
|
|
if (!mlo) |
514 |
|
|
goto nomem2; |
515 |
|
|
mhi = multadd(mhi, base, 0); |
516 |
|
|
if (!mhi) |
517 |
|
|
goto nomem2; |
518 |
|
|
} |
519 |
|
|
|
520 |
|
|
/* Do we yet have the shortest string that will round to d? */ |
521 |
|
|
j = cmp(b, mlo); |
522 |
|
|
/* j is b/2^s2 compared with mlo/2^s2. */ |
523 |
|
|
delta = diff(s, mhi); |
524 |
|
|
if (!delta) |
525 |
|
|
goto nomem2; |
526 |
|
|
j1 = delta->sign ? 1 : cmp(b, delta); |
527 |
|
|
Bfree(delta); |
528 |
|
|
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */ |
529 |
|
|
|
530 |
|
|
#ifndef ROUND_BIASED |
531 |
|
|
if (j1 == 0 && !(word1(d) & 1)) { |
532 |
|
|
if (j > 0) |
533 |
|
|
digit++; |
534 |
|
|
done = JS_TRUE; |
535 |
|
|
} else |
536 |
|
|
#endif |
537 |
|
|
if (j < 0 || (j == 0 |
538 |
|
|
#ifndef ROUND_BIASED |
539 |
|
|
&& !(word1(d) & 1) |
540 |
|
|
#endif |
541 |
|
|
)) { |
542 |
|
|
if (j1 > 0) { |
543 |
|
|
/* Either dig or dig+1 would work here as the least significant digit. |
544 |
|
|
Use whichever would produce an output value closer to d. */ |
545 |
|
|
b = lshift(b, 1); |
546 |
|
|
if (!b) |
547 |
|
|
goto nomem2; |
548 |
|
|
j1 = cmp(b, s); |
549 |
|
|
if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output |
550 |
|
|
* such as 3.5 in base 3. */ |
551 |
|
|
digit++; |
552 |
|
|
} |
553 |
|
|
done = JS_TRUE; |
554 |
|
|
} else if (j1 > 0) { |
555 |
|
|
digit++; |
556 |
|
|
done = JS_TRUE; |
557 |
|
|
} |
558 |
|
|
JS_ASSERT(digit < (uint32)base); |
559 |
|
|
*p++ = BASEDIGIT(digit); |
560 |
|
|
} while (!done); |
561 |
|
|
Bfree(b); |
562 |
|
|
Bfree(s); |
563 |
|
|
if (mlo != mhi) |
564 |
|
|
Bfree(mlo); |
565 |
|
|
Bfree(mhi); |
566 |
|
|
} |
567 |
|
|
JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE); |
568 |
|
|
*p = '\0'; |
569 |
|
|
UNLOCK_DTOA(); |
570 |
|
|
} |
571 |
|
|
return buffer; |
572 |
|
|
} |