1 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
* |
3 |
* ***** BEGIN LICENSE BLOCK ***** |
4 |
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
* |
6 |
* The contents of this file are subject to the Mozilla Public License Version |
7 |
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
* the License. You may obtain a copy of the License at |
9 |
* http://www.mozilla.org/MPL/ |
10 |
* |
11 |
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
* for the specific language governing rights and limitations under the |
14 |
* License. |
15 |
* |
16 |
* The Original Code is Mozilla Communicator client code, released |
17 |
* March 31, 1998. |
18 |
* |
19 |
* The Initial Developer of the Original Code is |
20 |
* Netscape Communications Corporation. |
21 |
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
* the Initial Developer. All Rights Reserved. |
23 |
* |
24 |
* Contributor(s): |
25 |
* |
26 |
* Alternatively, the contents of this file may be used under the terms of |
27 |
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
* of those above. If you wish to allow use of your version of this file only |
31 |
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
* use your version of this file under the terms of the MPL, indicate your |
33 |
* decision by deleting the provisions above and replace them with the notice |
34 |
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
* the provisions above, a recipient may use your version of this file under |
36 |
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
* |
38 |
* ***** END LICENSE BLOCK ***** */ |
39 |
|
40 |
/* |
41 |
* JS math package. |
42 |
*/ |
43 |
#include "jsstddef.h" |
44 |
#include "jslibmath.h" |
45 |
#include <stdlib.h> |
46 |
#include "jstypes.h" |
47 |
#include "jslong.h" |
48 |
#include "prmjtime.h" |
49 |
#include "jsapi.h" |
50 |
#include "jsatom.h" |
51 |
#include "jsbuiltins.h" |
52 |
#include "jscntxt.h" |
53 |
#include "jsversion.h" |
54 |
#include "jslock.h" |
55 |
#include "jsmath.h" |
56 |
#include "jsnum.h" |
57 |
#include "jsobj.h" |
58 |
|
59 |
extern jsdouble js_NaN; |
60 |
|
61 |
#ifndef M_E |
62 |
#define M_E 2.7182818284590452354 |
63 |
#endif |
64 |
#ifndef M_LOG2E |
65 |
#define M_LOG2E 1.4426950408889634074 |
66 |
#endif |
67 |
#ifndef M_LOG10E |
68 |
#define M_LOG10E 0.43429448190325182765 |
69 |
#endif |
70 |
#ifndef M_LN2 |
71 |
#define M_LN2 0.69314718055994530942 |
72 |
#endif |
73 |
#ifndef M_LN10 |
74 |
#define M_LN10 2.30258509299404568402 |
75 |
#endif |
76 |
#ifndef M_PI |
77 |
#define M_PI 3.14159265358979323846 |
78 |
#endif |
79 |
#ifndef M_SQRT2 |
80 |
#define M_SQRT2 1.41421356237309504880 |
81 |
#endif |
82 |
#ifndef M_SQRT1_2 |
83 |
#define M_SQRT1_2 0.70710678118654752440 |
84 |
#endif |
85 |
|
86 |
static JSConstDoubleSpec math_constants[] = { |
87 |
{M_E, "E", 0, {0,0,0}}, |
88 |
{M_LOG2E, "LOG2E", 0, {0,0,0}}, |
89 |
{M_LOG10E, "LOG10E", 0, {0,0,0}}, |
90 |
{M_LN2, "LN2", 0, {0,0,0}}, |
91 |
{M_LN10, "LN10", 0, {0,0,0}}, |
92 |
{M_PI, "PI", 0, {0,0,0}}, |
93 |
{M_SQRT2, "SQRT2", 0, {0,0,0}}, |
94 |
{M_SQRT1_2, "SQRT1_2", 0, {0,0,0}}, |
95 |
{0,0,0,{0,0,0}} |
96 |
}; |
97 |
|
98 |
JSClass js_MathClass = { |
99 |
js_Math_str, |
100 |
JSCLASS_HAS_CACHED_PROTO(JSProto_Math), |
101 |
JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, |
102 |
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub, |
103 |
JSCLASS_NO_OPTIONAL_MEMBERS |
104 |
}; |
105 |
|
106 |
static JSBool |
107 |
math_abs(JSContext *cx, uintN argc, jsval *vp) |
108 |
{ |
109 |
jsdouble x, z; |
110 |
|
111 |
if (argc == 0) { |
112 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
113 |
return JS_TRUE; |
114 |
} |
115 |
x = js_ValueToNumber(cx, &vp[2]); |
116 |
if (JSVAL_IS_NULL(vp[2])) |
117 |
return JS_FALSE; |
118 |
z = fabs(x); |
119 |
return js_NewNumberInRootedValue(cx, z, vp); |
120 |
} |
121 |
|
122 |
static JSBool |
123 |
math_acos(JSContext *cx, uintN argc, jsval *vp) |
124 |
{ |
125 |
jsdouble x, z; |
126 |
|
127 |
if (argc == 0) { |
128 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
129 |
return JS_TRUE; |
130 |
} |
131 |
x = js_ValueToNumber(cx, &vp[2]); |
132 |
if (JSVAL_IS_NULL(vp[2])) |
133 |
return JS_FALSE; |
134 |
#if defined(SOLARIS) && defined(__GNUC__) |
135 |
if (x < -1 || 1 < x) { |
136 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
137 |
return JS_TRUE; |
138 |
} |
139 |
#endif |
140 |
z = acos(x); |
141 |
return js_NewNumberInRootedValue(cx, z, vp); |
142 |
} |
143 |
|
144 |
static JSBool |
145 |
math_asin(JSContext *cx, uintN argc, jsval *vp) |
146 |
{ |
147 |
jsdouble x, z; |
148 |
|
149 |
if (argc == 0) { |
150 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
151 |
return JS_TRUE; |
152 |
} |
153 |
x = js_ValueToNumber(cx, &vp[2]); |
154 |
if (JSVAL_IS_NULL(vp[2])) |
155 |
return JS_FALSE; |
156 |
#if defined(SOLARIS) && defined(__GNUC__) |
157 |
if (x < -1 || 1 < x) { |
158 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
159 |
return JS_TRUE; |
160 |
} |
161 |
#endif |
162 |
z = asin(x); |
163 |
return js_NewNumberInRootedValue(cx, z, vp); |
164 |
} |
165 |
|
166 |
static JSBool |
167 |
math_atan(JSContext *cx, uintN argc, jsval *vp) |
168 |
{ |
169 |
jsdouble x, z; |
170 |
|
171 |
if (argc == 0) { |
172 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
173 |
return JS_TRUE; |
174 |
} |
175 |
x = js_ValueToNumber(cx, &vp[2]); |
176 |
if (JSVAL_IS_NULL(vp[2])) |
177 |
return JS_FALSE; |
178 |
z = atan(x); |
179 |
return js_NewNumberInRootedValue(cx, z, vp); |
180 |
} |
181 |
|
182 |
static JSBool |
183 |
math_atan2(JSContext *cx, uintN argc, jsval *vp) |
184 |
{ |
185 |
jsdouble x, y, z; |
186 |
|
187 |
if (argc <= 1) { |
188 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
189 |
return JS_TRUE; |
190 |
} |
191 |
x = js_ValueToNumber(cx, &vp[2]); |
192 |
if (JSVAL_IS_NULL(vp[2])) |
193 |
return JS_FALSE; |
194 |
y = js_ValueToNumber(cx, &vp[3]); |
195 |
if (JSVAL_IS_NULL(vp[3])) |
196 |
return JS_FALSE; |
197 |
#if defined(_MSC_VER) |
198 |
/* |
199 |
* MSVC's atan2 does not yield the result demanded by ECMA when both x |
200 |
* and y are infinite. |
201 |
* - The result is a multiple of pi/4. |
202 |
* - The sign of x determines the sign of the result. |
203 |
* - The sign of y determines the multiplicator, 1 or 3. |
204 |
*/ |
205 |
if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) { |
206 |
z = js_copysign(M_PI / 4, x); |
207 |
if (y < 0) |
208 |
z *= 3; |
209 |
return js_NewDoubleInRootedValue(cx, z, vp); |
210 |
} |
211 |
#endif |
212 |
|
213 |
#if defined(SOLARIS) && defined(__GNUC__) |
214 |
if (x == 0) { |
215 |
if (JSDOUBLE_IS_NEGZERO(y)) { |
216 |
z = js_copysign(M_PI, x); |
217 |
return js_NewDoubleInRootedValue(cx, z, vp); |
218 |
} |
219 |
if (y == 0) { |
220 |
z = x; |
221 |
return js_NewDoubleInRootedValue(cx, z, vp); |
222 |
} |
223 |
} |
224 |
#endif |
225 |
z = atan2(x, y); |
226 |
return js_NewNumberInRootedValue(cx, z, vp); |
227 |
} |
228 |
|
229 |
static JSBool |
230 |
math_ceil(JSContext *cx, uintN argc, jsval *vp) |
231 |
{ |
232 |
jsdouble x, z; |
233 |
|
234 |
if (argc == 0) { |
235 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
236 |
return JS_TRUE; |
237 |
} |
238 |
x = js_ValueToNumber(cx, &vp[2]); |
239 |
if (JSVAL_IS_NULL(vp[2])) |
240 |
return JS_FALSE; |
241 |
z = ceil(x); |
242 |
return js_NewNumberInRootedValue(cx, z, vp); |
243 |
} |
244 |
|
245 |
static JSBool |
246 |
math_cos(JSContext *cx, uintN argc, jsval *vp) |
247 |
{ |
248 |
jsdouble x, z; |
249 |
|
250 |
if (argc == 0) { |
251 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
252 |
return JS_TRUE; |
253 |
} |
254 |
x = js_ValueToNumber(cx, &vp[2]); |
255 |
if (JSVAL_IS_NULL(vp[2])) |
256 |
return JS_FALSE; |
257 |
z = cos(x); |
258 |
return js_NewNumberInRootedValue(cx, z, vp); |
259 |
} |
260 |
|
261 |
static JSBool |
262 |
math_exp(JSContext *cx, uintN argc, jsval *vp) |
263 |
{ |
264 |
jsdouble x, z; |
265 |
|
266 |
if (argc == 0) { |
267 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
268 |
return JS_TRUE; |
269 |
} |
270 |
x = js_ValueToNumber(cx, &vp[2]); |
271 |
if (JSVAL_IS_NULL(vp[2])) |
272 |
return JS_FALSE; |
273 |
#ifdef _WIN32 |
274 |
if (!JSDOUBLE_IS_NaN(x)) { |
275 |
if (x == *cx->runtime->jsPositiveInfinity) { |
276 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity); |
277 |
return JS_TRUE; |
278 |
} |
279 |
if (x == *cx->runtime->jsNegativeInfinity) { |
280 |
*vp = JSVAL_ZERO; |
281 |
return JS_TRUE; |
282 |
} |
283 |
} |
284 |
#endif |
285 |
z = exp(x); |
286 |
return js_NewNumberInRootedValue(cx, z, vp); |
287 |
} |
288 |
|
289 |
static JSBool |
290 |
math_floor(JSContext *cx, uintN argc, jsval *vp) |
291 |
{ |
292 |
jsdouble x, z; |
293 |
|
294 |
if (argc == 0) { |
295 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
296 |
return JS_TRUE; |
297 |
} |
298 |
x = js_ValueToNumber(cx, &vp[2]); |
299 |
if (JSVAL_IS_NULL(vp[2])) |
300 |
return JS_FALSE; |
301 |
z = floor(x); |
302 |
return js_NewNumberInRootedValue(cx, z, vp); |
303 |
} |
304 |
|
305 |
static JSBool |
306 |
math_log(JSContext *cx, uintN argc, jsval *vp) |
307 |
{ |
308 |
jsdouble x, z; |
309 |
|
310 |
if (argc == 0) { |
311 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
312 |
return JS_TRUE; |
313 |
} |
314 |
x = js_ValueToNumber(cx, &vp[2]); |
315 |
if (JSVAL_IS_NULL(vp[2])) |
316 |
return JS_FALSE; |
317 |
#if defined(SOLARIS) && defined(__GNUC__) |
318 |
if (x < 0) { |
319 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
320 |
return JS_TRUE; |
321 |
} |
322 |
#endif |
323 |
z = log(x); |
324 |
return js_NewNumberInRootedValue(cx, z, vp); |
325 |
} |
326 |
|
327 |
static JSBool |
328 |
math_max(JSContext *cx, uintN argc, jsval *vp) |
329 |
{ |
330 |
jsdouble x, z = *cx->runtime->jsNegativeInfinity; |
331 |
jsval *argv; |
332 |
uintN i; |
333 |
|
334 |
if (argc == 0) { |
335 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNegativeInfinity); |
336 |
return JS_TRUE; |
337 |
} |
338 |
argv = vp + 2; |
339 |
for (i = 0; i < argc; i++) { |
340 |
x = js_ValueToNumber(cx, &argv[i]); |
341 |
if (JSVAL_IS_NULL(argv[i])) |
342 |
return JS_FALSE; |
343 |
if (JSDOUBLE_IS_NaN(x)) { |
344 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
345 |
return JS_TRUE; |
346 |
} |
347 |
if (x == 0 && x == z) { |
348 |
if (js_copysign(1.0, z) == -1) |
349 |
z = x; |
350 |
} else { |
351 |
z = (x > z) ? x : z; |
352 |
} |
353 |
} |
354 |
return js_NewNumberInRootedValue(cx, z, vp); |
355 |
} |
356 |
|
357 |
static JSBool |
358 |
math_min(JSContext *cx, uintN argc, jsval *vp) |
359 |
{ |
360 |
jsdouble x, z = *cx->runtime->jsPositiveInfinity; |
361 |
jsval *argv; |
362 |
uintN i; |
363 |
|
364 |
if (argc == 0) { |
365 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity); |
366 |
return JS_TRUE; |
367 |
} |
368 |
argv = vp + 2; |
369 |
for (i = 0; i < argc; i++) { |
370 |
x = js_ValueToNumber(cx, &argv[i]); |
371 |
if (JSVAL_IS_NULL(argv[i])) |
372 |
return JS_FALSE; |
373 |
if (JSDOUBLE_IS_NaN(x)) { |
374 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
375 |
return JS_TRUE; |
376 |
} |
377 |
if (x == 0 && x == z) { |
378 |
if (js_copysign(1.0, x) == -1) |
379 |
z = x; |
380 |
} else { |
381 |
z = (x < z) ? x : z; |
382 |
} |
383 |
} |
384 |
return js_NewNumberInRootedValue(cx, z, vp); |
385 |
} |
386 |
|
387 |
static JSBool |
388 |
math_pow(JSContext *cx, uintN argc, jsval *vp) |
389 |
{ |
390 |
jsdouble x, y, z; |
391 |
|
392 |
if (argc <= 1) { |
393 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
394 |
return JS_TRUE; |
395 |
} |
396 |
x = js_ValueToNumber(cx, &vp[2]); |
397 |
if (JSVAL_IS_NULL(vp[2])) |
398 |
return JS_FALSE; |
399 |
y = js_ValueToNumber(cx, &vp[3]); |
400 |
if (JSVAL_IS_NULL(vp[3])) |
401 |
return JS_FALSE; |
402 |
/* |
403 |
* Because C99 and ECMA specify different behavior for pow(), |
404 |
* we need to wrap the libm call to make it ECMA compliant. |
405 |
*/ |
406 |
if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) { |
407 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
408 |
return JS_TRUE; |
409 |
} |
410 |
/* pow(x, +-0) is always 1, even for x = NaN. */ |
411 |
if (y == 0) { |
412 |
*vp = JSVAL_ONE; |
413 |
return JS_TRUE; |
414 |
} |
415 |
z = pow(x, y); |
416 |
return js_NewNumberInRootedValue(cx, z, vp); |
417 |
} |
418 |
|
419 |
/* |
420 |
* Math.random() support, lifted from java.util.Random.java. |
421 |
*/ |
422 |
static void |
423 |
random_setSeed(JSRuntime *rt, int64 seed) |
424 |
{ |
425 |
int64 tmp; |
426 |
|
427 |
JSLL_I2L(tmp, 1000); |
428 |
JSLL_DIV(seed, seed, tmp); |
429 |
JSLL_XOR(tmp, seed, rt->rngMultiplier); |
430 |
JSLL_AND(rt->rngSeed, tmp, rt->rngMask); |
431 |
} |
432 |
|
433 |
void |
434 |
js_random_init(JSRuntime *rt) |
435 |
{ |
436 |
int64 tmp, tmp2; |
437 |
|
438 |
/* Do at most once. */ |
439 |
if (rt->rngInitialized) |
440 |
return; |
441 |
rt->rngInitialized = JS_TRUE; |
442 |
|
443 |
/* rt->rngMultiplier = 0x5DEECE66DL */ |
444 |
JSLL_ISHL(tmp, 0x5, 32); |
445 |
JSLL_UI2L(tmp2, 0xDEECE66DL); |
446 |
JSLL_OR(rt->rngMultiplier, tmp, tmp2); |
447 |
|
448 |
/* rt->rngAddend = 0xBL */ |
449 |
JSLL_I2L(rt->rngAddend, 0xBL); |
450 |
|
451 |
/* rt->rngMask = (1L << 48) - 1 */ |
452 |
JSLL_I2L(tmp, 1); |
453 |
JSLL_SHL(tmp2, tmp, 48); |
454 |
JSLL_SUB(rt->rngMask, tmp2, tmp); |
455 |
|
456 |
/* rt->rngDscale = (jsdouble)(1L << 53) */ |
457 |
JSLL_SHL(tmp2, tmp, 53); |
458 |
JSLL_L2D(rt->rngDscale, tmp2); |
459 |
|
460 |
/* Finally, set the seed from current time. */ |
461 |
random_setSeed(rt, PRMJ_Now()); |
462 |
} |
463 |
|
464 |
static uint32 |
465 |
random_next(JSRuntime *rt, int bits) |
466 |
{ |
467 |
int64 nextseed, tmp; |
468 |
uint32 retval; |
469 |
|
470 |
JSLL_MUL(nextseed, rt->rngSeed, rt->rngMultiplier); |
471 |
JSLL_ADD(nextseed, nextseed, rt->rngAddend); |
472 |
JSLL_AND(nextseed, nextseed, rt->rngMask); |
473 |
rt->rngSeed = nextseed; |
474 |
JSLL_USHR(tmp, nextseed, 48 - bits); |
475 |
JSLL_L2I(retval, tmp); |
476 |
return retval; |
477 |
} |
478 |
|
479 |
jsdouble |
480 |
js_random_nextDouble(JSRuntime *rt) |
481 |
{ |
482 |
int64 tmp, tmp2; |
483 |
jsdouble d; |
484 |
|
485 |
JSLL_ISHL(tmp, random_next(rt, 26), 27); |
486 |
JSLL_UI2L(tmp2, random_next(rt, 27)); |
487 |
JSLL_ADD(tmp, tmp, tmp2); |
488 |
JSLL_L2D(d, tmp); |
489 |
return d / rt->rngDscale; |
490 |
} |
491 |
|
492 |
static JSBool |
493 |
math_random(JSContext *cx, uintN argc, jsval *vp) |
494 |
{ |
495 |
JSRuntime *rt; |
496 |
jsdouble z; |
497 |
|
498 |
rt = cx->runtime; |
499 |
JS_LOCK_RUNTIME(rt); |
500 |
js_random_init(rt); |
501 |
z = js_random_nextDouble(rt); |
502 |
JS_UNLOCK_RUNTIME(rt); |
503 |
return js_NewNumberInRootedValue(cx, z, vp); |
504 |
} |
505 |
|
506 |
#if defined _WIN32 && !defined WINCE && _MSC_VER < 1400 |
507 |
/* Try to work around apparent _copysign bustage in VC6 and VC7. */ |
508 |
double |
509 |
js_copysign(double x, double y) |
510 |
{ |
511 |
jsdpun xu, yu; |
512 |
|
513 |
xu.d = x; |
514 |
yu.d = y; |
515 |
xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT; |
516 |
xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT; |
517 |
return xu.d; |
518 |
} |
519 |
#endif |
520 |
|
521 |
static JSBool |
522 |
math_round(JSContext *cx, uintN argc, jsval *vp) |
523 |
{ |
524 |
jsdouble x, z; |
525 |
|
526 |
if (argc == 0) { |
527 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
528 |
return JS_TRUE; |
529 |
} |
530 |
x = js_ValueToNumber(cx, &vp[2]); |
531 |
if (JSVAL_IS_NULL(vp[2])) |
532 |
return JS_FALSE; |
533 |
z = js_copysign(floor(x + 0.5), x); |
534 |
return js_NewNumberInRootedValue(cx, z, vp); |
535 |
} |
536 |
|
537 |
static JSBool |
538 |
math_sin(JSContext *cx, uintN argc, jsval *vp) |
539 |
{ |
540 |
jsdouble x, z; |
541 |
|
542 |
if (argc == 0) { |
543 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
544 |
return JS_TRUE; |
545 |
} |
546 |
x = js_ValueToNumber(cx, &vp[2]); |
547 |
if (JSVAL_IS_NULL(vp[2])) |
548 |
return JS_FALSE; |
549 |
z = sin(x); |
550 |
return js_NewNumberInRootedValue(cx, z, vp); |
551 |
} |
552 |
|
553 |
static JSBool |
554 |
math_sqrt(JSContext *cx, uintN argc, jsval *vp) |
555 |
{ |
556 |
jsdouble x, z; |
557 |
|
558 |
if (argc == 0) { |
559 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
560 |
return JS_TRUE; |
561 |
} |
562 |
x = js_ValueToNumber(cx, &vp[2]); |
563 |
if (JSVAL_IS_NULL(vp[2])) |
564 |
return JS_FALSE; |
565 |
z = sqrt(x); |
566 |
return js_NewNumberInRootedValue(cx, z, vp); |
567 |
} |
568 |
|
569 |
static JSBool |
570 |
math_tan(JSContext *cx, uintN argc, jsval *vp) |
571 |
{ |
572 |
jsdouble x, z; |
573 |
|
574 |
if (argc == 0) { |
575 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
576 |
return JS_TRUE; |
577 |
} |
578 |
x = js_ValueToNumber(cx, &vp[2]); |
579 |
if (JSVAL_IS_NULL(vp[2])) |
580 |
return JS_FALSE; |
581 |
z = tan(x); |
582 |
return js_NewNumberInRootedValue(cx, z, vp); |
583 |
} |
584 |
|
585 |
#if JS_HAS_TOSOURCE |
586 |
static JSBool |
587 |
math_toSource(JSContext *cx, uintN argc, jsval *vp) |
588 |
{ |
589 |
*vp = ATOM_KEY(CLASS_ATOM(cx, Math)); |
590 |
return JS_TRUE; |
591 |
} |
592 |
#endif |
593 |
|
594 |
#ifdef JS_TRACER |
595 |
|
596 |
#define MATH_BUILTIN_1(name) \ |
597 |
static jsdouble FASTCALL math_##name##_tn(jsdouble d) { return name(d); } \ |
598 |
JS_DEFINE_TRCINFO_1(math_##name, \ |
599 |
(1, (static, DOUBLE, math_##name##_tn, DOUBLE, 1, 1))) |
600 |
|
601 |
MATH_BUILTIN_1(sin) |
602 |
MATH_BUILTIN_1(cos) |
603 |
MATH_BUILTIN_1(sqrt) |
604 |
MATH_BUILTIN_1(floor) |
605 |
MATH_BUILTIN_1(ceil) |
606 |
|
607 |
static jsdouble FASTCALL |
608 |
math_abs_tn(jsdouble d) |
609 |
{ |
610 |
return fabs(d); |
611 |
} |
612 |
|
613 |
static jsdouble FASTCALL |
614 |
math_log_tn(jsdouble d) |
615 |
{ |
616 |
#if defined(SOLARIS) && defined(__GNUC__) |
617 |
if (d < 0) |
618 |
return js_NaN; |
619 |
#endif |
620 |
return log(d); |
621 |
} |
622 |
|
623 |
static jsdouble FASTCALL |
624 |
math_max_tn(jsdouble d, jsdouble p) |
625 |
{ |
626 |
if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p)) |
627 |
return js_NaN; |
628 |
|
629 |
if (p == 0 && p == d) { |
630 |
if (js_copysign(1.0, d) == -1) |
631 |
return p; |
632 |
return d; |
633 |
} |
634 |
return (p > d) ? p : d; |
635 |
} |
636 |
|
637 |
static jsdouble FASTCALL |
638 |
math_pow_tn(jsdouble d, jsdouble p) |
639 |
{ |
640 |
if (!JSDOUBLE_IS_FINITE(p) && (d == 1.0 || d == -1.0)) |
641 |
return js_NaN; |
642 |
if (p == 0) |
643 |
return 1.0; |
644 |
return pow(d, p); |
645 |
} |
646 |
|
647 |
static jsdouble FASTCALL |
648 |
math_random_tn(JSRuntime* rt) |
649 |
{ |
650 |
JS_LOCK_RUNTIME(rt); |
651 |
js_random_init(rt); |
652 |
jsdouble z = js_random_nextDouble(rt); |
653 |
JS_UNLOCK_RUNTIME(rt); |
654 |
return z; |
655 |
} |
656 |
|
657 |
static jsdouble FASTCALL |
658 |
math_round_tn(jsdouble x) |
659 |
{ |
660 |
return js_copysign(floor(x + 0.5), x); |
661 |
} |
662 |
|
663 |
JS_DEFINE_TRCINFO_1(math_abs, |
664 |
(1, (static, DOUBLE, math_abs_tn, DOUBLE, 1, 1))) |
665 |
JS_DEFINE_TRCINFO_1(math_log, |
666 |
(1, (static, DOUBLE, math_log_tn, DOUBLE, 1, 1))) |
667 |
JS_DEFINE_TRCINFO_1(math_max, |
668 |
(2, (static, DOUBLE, math_max_tn, DOUBLE, DOUBLE, 1, 1))) |
669 |
JS_DEFINE_TRCINFO_1(math_pow, |
670 |
(2, (static, DOUBLE, math_pow_tn, DOUBLE, DOUBLE, 1, 1))) |
671 |
JS_DEFINE_TRCINFO_1(math_random, |
672 |
(1, (static, DOUBLE, math_random_tn, RUNTIME, 0, 0))) |
673 |
JS_DEFINE_TRCINFO_1(math_round, |
674 |
(1, (static, DOUBLE, math_round_tn, DOUBLE, 1, 1))) |
675 |
|
676 |
#endif /* JS_TRACER */ |
677 |
|
678 |
static JSFunctionSpec math_static_methods[] = { |
679 |
#if JS_HAS_TOSOURCE |
680 |
JS_FN(js_toSource_str, math_toSource, 0, 0), |
681 |
#endif |
682 |
JS_TN("abs", math_abs, 1, 0, math_abs_trcinfo), |
683 |
JS_FN("acos", math_acos, 1, 0), |
684 |
JS_FN("asin", math_asin, 1, 0), |
685 |
JS_FN("atan", math_atan, 1, 0), |
686 |
JS_FN("atan2", math_atan2, 2, 0), |
687 |
JS_TN("ceil", math_ceil, 1, 0, math_ceil_trcinfo), |
688 |
JS_TN("cos", math_cos, 1, 0, math_cos_trcinfo), |
689 |
JS_FN("exp", math_exp, 1, 0), |
690 |
JS_TN("floor", math_floor, 1, 0, math_floor_trcinfo), |
691 |
JS_TN("log", math_log, 1, 0, math_log_trcinfo), |
692 |
JS_TN("max", math_max, 2, 0, math_max_trcinfo), |
693 |
JS_FN("min", math_min, 2, 0), |
694 |
JS_TN("pow", math_pow, 2, 0, math_pow_trcinfo), |
695 |
JS_TN("random", math_random, 0, 0, math_random_trcinfo), |
696 |
JS_TN("round", math_round, 1, 0, math_round_trcinfo), |
697 |
JS_TN("sin", math_sin, 1, 0, math_sin_trcinfo), |
698 |
JS_TN("sqrt", math_sqrt, 1, 0, math_sqrt_trcinfo), |
699 |
JS_FN("tan", math_tan, 1, 0), |
700 |
JS_FS_END |
701 |
}; |
702 |
|
703 |
JSObject * |
704 |
js_InitMathClass(JSContext *cx, JSObject *obj) |
705 |
{ |
706 |
JSObject *Math; |
707 |
|
708 |
Math = JS_NewObject(cx, &js_MathClass, NULL, obj); |
709 |
if (!Math) |
710 |
return NULL; |
711 |
if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math), |
712 |
JS_PropertyStub, JS_PropertyStub, |
713 |
JSPROP_READONLY | JSPROP_PERMANENT)) |
714 |
return NULL; |
715 |
|
716 |
if (!JS_DefineFunctions(cx, Math, math_static_methods)) |
717 |
return NULL; |
718 |
if (!JS_DefineConstDoubles(cx, Math, math_constants)) |
719 |
return NULL; |
720 |
return Math; |
721 |
} |