1 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
* |
3 |
* ***** BEGIN LICENSE BLOCK ***** |
4 |
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
* |
6 |
* The contents of this file are subject to the Mozilla Public License Version |
7 |
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
* the License. You may obtain a copy of the License at |
9 |
* http://www.mozilla.org/MPL/ |
10 |
* |
11 |
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
* for the specific language governing rights and limitations under the |
14 |
* License. |
15 |
* |
16 |
* The Original Code is Mozilla Communicator client code, released |
17 |
* March 31, 1998. |
18 |
* |
19 |
* The Initial Developer of the Original Code is |
20 |
* Netscape Communications Corporation. |
21 |
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
* the Initial Developer. All Rights Reserved. |
23 |
* |
24 |
* Contributor(s): |
25 |
* |
26 |
* Alternatively, the contents of this file may be used under the terms of |
27 |
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
* of those above. If you wish to allow use of your version of this file only |
31 |
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
* use your version of this file under the terms of the MPL, indicate your |
33 |
* decision by deleting the provisions above and replace them with the notice |
34 |
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
* the provisions above, a recipient may use your version of this file under |
36 |
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
* |
38 |
* ***** END LICENSE BLOCK ***** */ |
39 |
|
40 |
/* |
41 |
* JS math package. |
42 |
*/ |
43 |
#include "jsstddef.h" |
44 |
#include "jslibmath.h" |
45 |
#include <stdlib.h> |
46 |
#include "jstypes.h" |
47 |
#include "jslong.h" |
48 |
#include "prmjtime.h" |
49 |
#include "jsapi.h" |
50 |
#include "jsatom.h" |
51 |
#include "jsbuiltins.h" |
52 |
#include "jscntxt.h" |
53 |
#include "jsversion.h" |
54 |
#include "jslock.h" |
55 |
#include "jsmath.h" |
56 |
#include "jsnum.h" |
57 |
#include "jsobj.h" |
58 |
|
59 |
extern jsdouble js_NaN; |
60 |
|
61 |
#ifndef M_E |
62 |
#define M_E 2.7182818284590452354 |
63 |
#endif |
64 |
#ifndef M_LOG2E |
65 |
#define M_LOG2E 1.4426950408889634074 |
66 |
#endif |
67 |
#ifndef M_LOG10E |
68 |
#define M_LOG10E 0.43429448190325182765 |
69 |
#endif |
70 |
#ifndef M_LN2 |
71 |
#define M_LN2 0.69314718055994530942 |
72 |
#endif |
73 |
#ifndef M_LN10 |
74 |
#define M_LN10 2.30258509299404568402 |
75 |
#endif |
76 |
#ifndef M_PI |
77 |
#define M_PI 3.14159265358979323846 |
78 |
#endif |
79 |
#ifndef M_SQRT2 |
80 |
#define M_SQRT2 1.41421356237309504880 |
81 |
#endif |
82 |
#ifndef M_SQRT1_2 |
83 |
#define M_SQRT1_2 0.70710678118654752440 |
84 |
#endif |
85 |
|
86 |
static JSConstDoubleSpec math_constants[] = { |
87 |
{M_E, "E", 0, {0,0,0}}, |
88 |
{M_LOG2E, "LOG2E", 0, {0,0,0}}, |
89 |
{M_LOG10E, "LOG10E", 0, {0,0,0}}, |
90 |
{M_LN2, "LN2", 0, {0,0,0}}, |
91 |
{M_LN10, "LN10", 0, {0,0,0}}, |
92 |
{M_PI, "PI", 0, {0,0,0}}, |
93 |
{M_SQRT2, "SQRT2", 0, {0,0,0}}, |
94 |
{M_SQRT1_2, "SQRT1_2", 0, {0,0,0}}, |
95 |
{0,0,0,{0,0,0}} |
96 |
}; |
97 |
|
98 |
JSClass js_MathClass = { |
99 |
js_Math_str, |
100 |
JSCLASS_HAS_CACHED_PROTO(JSProto_Math), |
101 |
JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, |
102 |
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub, |
103 |
JSCLASS_NO_OPTIONAL_MEMBERS |
104 |
}; |
105 |
|
106 |
static JSBool |
107 |
math_abs(JSContext *cx, uintN argc, jsval *vp) |
108 |
{ |
109 |
jsdouble x, z; |
110 |
|
111 |
if (argc == 0) { |
112 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
113 |
return JS_TRUE; |
114 |
} |
115 |
x = js_ValueToNumber(cx, &vp[2]); |
116 |
if (JSVAL_IS_NULL(vp[2])) |
117 |
return JS_FALSE; |
118 |
z = fabs(x); |
119 |
return js_NewNumberInRootedValue(cx, z, vp); |
120 |
} |
121 |
|
122 |
static JSBool |
123 |
math_acos(JSContext *cx, uintN argc, jsval *vp) |
124 |
{ |
125 |
jsdouble x, z; |
126 |
|
127 |
if (argc == 0) { |
128 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
129 |
return JS_TRUE; |
130 |
} |
131 |
x = js_ValueToNumber(cx, &vp[2]); |
132 |
if (JSVAL_IS_NULL(vp[2])) |
133 |
return JS_FALSE; |
134 |
#if defined(SOLARIS) && defined(__GNUC__) |
135 |
if (x < -1 || 1 < x) { |
136 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
137 |
return JS_TRUE; |
138 |
} |
139 |
#endif |
140 |
z = acos(x); |
141 |
return js_NewNumberInRootedValue(cx, z, vp); |
142 |
} |
143 |
|
144 |
static JSBool |
145 |
math_asin(JSContext *cx, uintN argc, jsval *vp) |
146 |
{ |
147 |
jsdouble x, z; |
148 |
|
149 |
if (argc == 0) { |
150 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
151 |
return JS_TRUE; |
152 |
} |
153 |
x = js_ValueToNumber(cx, &vp[2]); |
154 |
if (JSVAL_IS_NULL(vp[2])) |
155 |
return JS_FALSE; |
156 |
#if defined(SOLARIS) && defined(__GNUC__) |
157 |
if (x < -1 || 1 < x) { |
158 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
159 |
return JS_TRUE; |
160 |
} |
161 |
#endif |
162 |
z = asin(x); |
163 |
return js_NewNumberInRootedValue(cx, z, vp); |
164 |
} |
165 |
|
166 |
static JSBool |
167 |
math_atan(JSContext *cx, uintN argc, jsval *vp) |
168 |
{ |
169 |
jsdouble x, z; |
170 |
|
171 |
if (argc == 0) { |
172 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
173 |
return JS_TRUE; |
174 |
} |
175 |
x = js_ValueToNumber(cx, &vp[2]); |
176 |
if (JSVAL_IS_NULL(vp[2])) |
177 |
return JS_FALSE; |
178 |
z = atan(x); |
179 |
return js_NewNumberInRootedValue(cx, z, vp); |
180 |
} |
181 |
|
182 |
static inline jsdouble JS_FASTCALL |
183 |
math_atan2_kernel(jsdouble x, jsdouble y) |
184 |
{ |
185 |
#if defined(_MSC_VER) |
186 |
/* |
187 |
* MSVC's atan2 does not yield the result demanded by ECMA when both x |
188 |
* and y are infinite. |
189 |
* - The result is a multiple of pi/4. |
190 |
* - The sign of x determines the sign of the result. |
191 |
* - The sign of y determines the multiplicator, 1 or 3. |
192 |
*/ |
193 |
if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) { |
194 |
jsdouble z = js_copysign(M_PI / 4, x); |
195 |
if (y < 0) |
196 |
z *= 3; |
197 |
return z; |
198 |
} |
199 |
#endif |
200 |
|
201 |
#if defined(SOLARIS) && defined(__GNUC__) |
202 |
if (x == 0) { |
203 |
if (JSDOUBLE_IS_NEGZERO(y)) |
204 |
return js_copysign(M_PI, x); |
205 |
if (y == 0) |
206 |
return x; |
207 |
} |
208 |
#endif |
209 |
return atan2(x, y); |
210 |
} |
211 |
|
212 |
static JSBool |
213 |
math_atan2(JSContext *cx, uintN argc, jsval *vp) |
214 |
{ |
215 |
jsdouble x, y; |
216 |
|
217 |
if (argc <= 1) { |
218 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
219 |
return JS_TRUE; |
220 |
} |
221 |
x = js_ValueToNumber(cx, &vp[2]); |
222 |
if (JSVAL_IS_NULL(vp[2])) |
223 |
return JS_FALSE; |
224 |
y = js_ValueToNumber(cx, &vp[3]); |
225 |
if (JSVAL_IS_NULL(vp[3])) |
226 |
return JS_FALSE; |
227 |
return js_NewNumberInRootedValue(cx, math_atan2_kernel (x, y), vp); |
228 |
} |
229 |
|
230 |
static inline jsdouble JS_FASTCALL |
231 |
math_ceil_kernel(jsdouble x) |
232 |
{ |
233 |
#ifdef __APPLE__ |
234 |
if (x < 0 && x > -1.0) |
235 |
return js_copysign(0, -1); |
236 |
#endif |
237 |
return ceil(x); |
238 |
} |
239 |
|
240 |
static JSBool |
241 |
math_ceil(JSContext *cx, uintN argc, jsval *vp) |
242 |
{ |
243 |
jsdouble x, z; |
244 |
|
245 |
if (argc == 0) { |
246 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
247 |
return JS_TRUE; |
248 |
} |
249 |
x = js_ValueToNumber(cx, &vp[2]); |
250 |
if (JSVAL_IS_NULL(vp[2])) |
251 |
return JS_FALSE; |
252 |
z = math_ceil_kernel(x); |
253 |
return js_NewNumberInRootedValue(cx, z, vp); |
254 |
} |
255 |
|
256 |
static JSBool |
257 |
math_cos(JSContext *cx, uintN argc, jsval *vp) |
258 |
{ |
259 |
jsdouble x, z; |
260 |
|
261 |
if (argc == 0) { |
262 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
263 |
return JS_TRUE; |
264 |
} |
265 |
x = js_ValueToNumber(cx, &vp[2]); |
266 |
if (JSVAL_IS_NULL(vp[2])) |
267 |
return JS_FALSE; |
268 |
z = cos(x); |
269 |
return js_NewNumberInRootedValue(cx, z, vp); |
270 |
} |
271 |
|
272 |
static JSBool |
273 |
math_exp(JSContext *cx, uintN argc, jsval *vp) |
274 |
{ |
275 |
jsdouble x, z; |
276 |
|
277 |
if (argc == 0) { |
278 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
279 |
return JS_TRUE; |
280 |
} |
281 |
x = js_ValueToNumber(cx, &vp[2]); |
282 |
if (JSVAL_IS_NULL(vp[2])) |
283 |
return JS_FALSE; |
284 |
#ifdef _WIN32 |
285 |
if (!JSDOUBLE_IS_NaN(x)) { |
286 |
if (x == *cx->runtime->jsPositiveInfinity) { |
287 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity); |
288 |
return JS_TRUE; |
289 |
} |
290 |
if (x == *cx->runtime->jsNegativeInfinity) { |
291 |
*vp = JSVAL_ZERO; |
292 |
return JS_TRUE; |
293 |
} |
294 |
} |
295 |
#endif |
296 |
z = exp(x); |
297 |
return js_NewNumberInRootedValue(cx, z, vp); |
298 |
} |
299 |
|
300 |
static JSBool |
301 |
math_floor(JSContext *cx, uintN argc, jsval *vp) |
302 |
{ |
303 |
jsdouble x, z; |
304 |
|
305 |
if (argc == 0) { |
306 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
307 |
return JS_TRUE; |
308 |
} |
309 |
x = js_ValueToNumber(cx, &vp[2]); |
310 |
if (JSVAL_IS_NULL(vp[2])) |
311 |
return JS_FALSE; |
312 |
z = floor(x); |
313 |
return js_NewNumberInRootedValue(cx, z, vp); |
314 |
} |
315 |
|
316 |
static JSBool |
317 |
math_log(JSContext *cx, uintN argc, jsval *vp) |
318 |
{ |
319 |
jsdouble x, z; |
320 |
|
321 |
if (argc == 0) { |
322 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
323 |
return JS_TRUE; |
324 |
} |
325 |
x = js_ValueToNumber(cx, &vp[2]); |
326 |
if (JSVAL_IS_NULL(vp[2])) |
327 |
return JS_FALSE; |
328 |
#if defined(SOLARIS) && defined(__GNUC__) |
329 |
if (x < 0) { |
330 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
331 |
return JS_TRUE; |
332 |
} |
333 |
#endif |
334 |
z = log(x); |
335 |
return js_NewNumberInRootedValue(cx, z, vp); |
336 |
} |
337 |
|
338 |
static JSBool |
339 |
math_max(JSContext *cx, uintN argc, jsval *vp) |
340 |
{ |
341 |
jsdouble x, z = *cx->runtime->jsNegativeInfinity; |
342 |
jsval *argv; |
343 |
uintN i; |
344 |
|
345 |
if (argc == 0) { |
346 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNegativeInfinity); |
347 |
return JS_TRUE; |
348 |
} |
349 |
argv = vp + 2; |
350 |
for (i = 0; i < argc; i++) { |
351 |
x = js_ValueToNumber(cx, &argv[i]); |
352 |
if (JSVAL_IS_NULL(argv[i])) |
353 |
return JS_FALSE; |
354 |
if (JSDOUBLE_IS_NaN(x)) { |
355 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
356 |
return JS_TRUE; |
357 |
} |
358 |
if (x == 0 && x == z) { |
359 |
if (js_copysign(1.0, z) == -1) |
360 |
z = x; |
361 |
} else { |
362 |
z = (x > z) ? x : z; |
363 |
} |
364 |
} |
365 |
return js_NewNumberInRootedValue(cx, z, vp); |
366 |
} |
367 |
|
368 |
static JSBool |
369 |
math_min(JSContext *cx, uintN argc, jsval *vp) |
370 |
{ |
371 |
jsdouble x, z = *cx->runtime->jsPositiveInfinity; |
372 |
jsval *argv; |
373 |
uintN i; |
374 |
|
375 |
if (argc == 0) { |
376 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity); |
377 |
return JS_TRUE; |
378 |
} |
379 |
argv = vp + 2; |
380 |
for (i = 0; i < argc; i++) { |
381 |
x = js_ValueToNumber(cx, &argv[i]); |
382 |
if (JSVAL_IS_NULL(argv[i])) |
383 |
return JS_FALSE; |
384 |
if (JSDOUBLE_IS_NaN(x)) { |
385 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
386 |
return JS_TRUE; |
387 |
} |
388 |
if (x == 0 && x == z) { |
389 |
if (js_copysign(1.0, x) == -1) |
390 |
z = x; |
391 |
} else { |
392 |
z = (x < z) ? x : z; |
393 |
} |
394 |
} |
395 |
return js_NewNumberInRootedValue(cx, z, vp); |
396 |
} |
397 |
|
398 |
static JSBool |
399 |
math_pow(JSContext *cx, uintN argc, jsval *vp) |
400 |
{ |
401 |
jsdouble x, y, z; |
402 |
|
403 |
if (argc <= 1) { |
404 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
405 |
return JS_TRUE; |
406 |
} |
407 |
x = js_ValueToNumber(cx, &vp[2]); |
408 |
if (JSVAL_IS_NULL(vp[2])) |
409 |
return JS_FALSE; |
410 |
y = js_ValueToNumber(cx, &vp[3]); |
411 |
if (JSVAL_IS_NULL(vp[3])) |
412 |
return JS_FALSE; |
413 |
/* |
414 |
* Because C99 and ECMA specify different behavior for pow(), |
415 |
* we need to wrap the libm call to make it ECMA compliant. |
416 |
*/ |
417 |
if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) { |
418 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
419 |
return JS_TRUE; |
420 |
} |
421 |
/* pow(x, +-0) is always 1, even for x = NaN. */ |
422 |
if (y == 0) { |
423 |
*vp = JSVAL_ONE; |
424 |
return JS_TRUE; |
425 |
} |
426 |
z = pow(x, y); |
427 |
return js_NewNumberInRootedValue(cx, z, vp); |
428 |
} |
429 |
|
430 |
/* |
431 |
* Math.random() support, lifted from java.util.Random.java. |
432 |
*/ |
433 |
static void |
434 |
random_setSeed(JSRuntime *rt, int64 seed) |
435 |
{ |
436 |
int64 tmp; |
437 |
|
438 |
JSLL_I2L(tmp, 1000); |
439 |
JSLL_DIV(seed, seed, tmp); |
440 |
JSLL_XOR(tmp, seed, rt->rngMultiplier); |
441 |
JSLL_AND(rt->rngSeed, tmp, rt->rngMask); |
442 |
} |
443 |
|
444 |
void |
445 |
js_random_init(JSRuntime *rt) |
446 |
{ |
447 |
int64 tmp, tmp2; |
448 |
|
449 |
/* Do at most once. */ |
450 |
if (rt->rngInitialized) |
451 |
return; |
452 |
rt->rngInitialized = JS_TRUE; |
453 |
|
454 |
/* rt->rngMultiplier = 0x5DEECE66DL */ |
455 |
JSLL_ISHL(tmp, 0x5, 32); |
456 |
JSLL_UI2L(tmp2, 0xDEECE66DL); |
457 |
JSLL_OR(rt->rngMultiplier, tmp, tmp2); |
458 |
|
459 |
/* rt->rngAddend = 0xBL */ |
460 |
JSLL_I2L(rt->rngAddend, 0xBL); |
461 |
|
462 |
/* rt->rngMask = (1L << 48) - 1 */ |
463 |
JSLL_I2L(tmp, 1); |
464 |
JSLL_SHL(tmp2, tmp, 48); |
465 |
JSLL_SUB(rt->rngMask, tmp2, tmp); |
466 |
|
467 |
/* rt->rngDscale = (jsdouble)(1L << 53) */ |
468 |
JSLL_SHL(tmp2, tmp, 53); |
469 |
JSLL_L2D(rt->rngDscale, tmp2); |
470 |
|
471 |
/* Finally, set the seed from current time. */ |
472 |
random_setSeed(rt, PRMJ_Now()); |
473 |
} |
474 |
|
475 |
static uint32 |
476 |
random_next(JSRuntime *rt, int bits) |
477 |
{ |
478 |
int64 nextseed, tmp; |
479 |
uint32 retval; |
480 |
|
481 |
JSLL_MUL(nextseed, rt->rngSeed, rt->rngMultiplier); |
482 |
JSLL_ADD(nextseed, nextseed, rt->rngAddend); |
483 |
JSLL_AND(nextseed, nextseed, rt->rngMask); |
484 |
rt->rngSeed = nextseed; |
485 |
JSLL_USHR(tmp, nextseed, 48 - bits); |
486 |
JSLL_L2I(retval, tmp); |
487 |
return retval; |
488 |
} |
489 |
|
490 |
jsdouble |
491 |
js_random_nextDouble(JSRuntime *rt) |
492 |
{ |
493 |
int64 tmp, tmp2; |
494 |
jsdouble d; |
495 |
|
496 |
JSLL_ISHL(tmp, random_next(rt, 26), 27); |
497 |
JSLL_UI2L(tmp2, random_next(rt, 27)); |
498 |
JSLL_ADD(tmp, tmp, tmp2); |
499 |
JSLL_L2D(d, tmp); |
500 |
return d / rt->rngDscale; |
501 |
} |
502 |
|
503 |
static JSBool |
504 |
math_random(JSContext *cx, uintN argc, jsval *vp) |
505 |
{ |
506 |
JSRuntime *rt; |
507 |
jsdouble z; |
508 |
|
509 |
rt = cx->runtime; |
510 |
JS_LOCK_RUNTIME(rt); |
511 |
js_random_init(rt); |
512 |
z = js_random_nextDouble(rt); |
513 |
JS_UNLOCK_RUNTIME(rt); |
514 |
return js_NewNumberInRootedValue(cx, z, vp); |
515 |
} |
516 |
|
517 |
#if defined _WIN32 && !defined WINCE && _MSC_VER < 1400 |
518 |
/* Try to work around apparent _copysign bustage in VC6 and VC7. */ |
519 |
double |
520 |
js_copysign(double x, double y) |
521 |
{ |
522 |
jsdpun xu, yu; |
523 |
|
524 |
xu.d = x; |
525 |
yu.d = y; |
526 |
xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT; |
527 |
xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT; |
528 |
return xu.d; |
529 |
} |
530 |
#endif |
531 |
|
532 |
static JSBool |
533 |
math_round(JSContext *cx, uintN argc, jsval *vp) |
534 |
{ |
535 |
jsdouble x, z; |
536 |
|
537 |
if (argc == 0) { |
538 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
539 |
return JS_TRUE; |
540 |
} |
541 |
x = js_ValueToNumber(cx, &vp[2]); |
542 |
if (JSVAL_IS_NULL(vp[2])) |
543 |
return JS_FALSE; |
544 |
z = js_copysign(floor(x + 0.5), x); |
545 |
return js_NewNumberInRootedValue(cx, z, vp); |
546 |
} |
547 |
|
548 |
static JSBool |
549 |
math_sin(JSContext *cx, uintN argc, jsval *vp) |
550 |
{ |
551 |
jsdouble x, z; |
552 |
|
553 |
if (argc == 0) { |
554 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
555 |
return JS_TRUE; |
556 |
} |
557 |
x = js_ValueToNumber(cx, &vp[2]); |
558 |
if (JSVAL_IS_NULL(vp[2])) |
559 |
return JS_FALSE; |
560 |
z = sin(x); |
561 |
return js_NewNumberInRootedValue(cx, z, vp); |
562 |
} |
563 |
|
564 |
static JSBool |
565 |
math_sqrt(JSContext *cx, uintN argc, jsval *vp) |
566 |
{ |
567 |
jsdouble x, z; |
568 |
|
569 |
if (argc == 0) { |
570 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
571 |
return JS_TRUE; |
572 |
} |
573 |
x = js_ValueToNumber(cx, &vp[2]); |
574 |
if (JSVAL_IS_NULL(vp[2])) |
575 |
return JS_FALSE; |
576 |
z = sqrt(x); |
577 |
return js_NewNumberInRootedValue(cx, z, vp); |
578 |
} |
579 |
|
580 |
static JSBool |
581 |
math_tan(JSContext *cx, uintN argc, jsval *vp) |
582 |
{ |
583 |
jsdouble x, z; |
584 |
|
585 |
if (argc == 0) { |
586 |
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); |
587 |
return JS_TRUE; |
588 |
} |
589 |
x = js_ValueToNumber(cx, &vp[2]); |
590 |
if (JSVAL_IS_NULL(vp[2])) |
591 |
return JS_FALSE; |
592 |
z = tan(x); |
593 |
return js_NewNumberInRootedValue(cx, z, vp); |
594 |
} |
595 |
|
596 |
#if JS_HAS_TOSOURCE |
597 |
static JSBool |
598 |
math_toSource(JSContext *cx, uintN argc, jsval *vp) |
599 |
{ |
600 |
*vp = ATOM_KEY(CLASS_ATOM(cx, Math)); |
601 |
return JS_TRUE; |
602 |
} |
603 |
#endif |
604 |
|
605 |
#ifdef JS_TRACER |
606 |
|
607 |
#define MATH_BUILTIN_1(name) MATH_BUILTIN_CFUN_1(name, name) |
608 |
#define MATH_BUILTIN_CFUN_1(name, cfun) \ |
609 |
static jsdouble FASTCALL math_##name##_tn(jsdouble d) { return cfun(d); } \ |
610 |
JS_DEFINE_TRCINFO_1(math_##name, \ |
611 |
(1, (static, DOUBLE, math_##name##_tn, DOUBLE, 1, 1))) |
612 |
|
613 |
MATH_BUILTIN_CFUN_1(abs, fabs) |
614 |
MATH_BUILTIN_1(atan) |
615 |
MATH_BUILTIN_1(sin) |
616 |
MATH_BUILTIN_1(cos) |
617 |
MATH_BUILTIN_1(sqrt) |
618 |
MATH_BUILTIN_1(floor) |
619 |
MATH_BUILTIN_1(tan) |
620 |
|
621 |
static jsdouble FASTCALL |
622 |
math_acos_tn(jsdouble d) |
623 |
{ |
624 |
#if defined(SOLARIS) && defined(__GNUC__) |
625 |
if (d < -1 || 1 < d) { |
626 |
return js_NaN; |
627 |
} |
628 |
#endif |
629 |
return acos(d); |
630 |
} |
631 |
|
632 |
static jsdouble FASTCALL |
633 |
math_asin_tn(jsdouble d) |
634 |
{ |
635 |
#if defined(SOLARIS) && defined(__GNUC__) |
636 |
if (d < -1 || 1 < d) { |
637 |
return js_NaN; |
638 |
} |
639 |
#endif |
640 |
return asin(d); |
641 |
} |
642 |
|
643 |
#ifdef _WIN32 |
644 |
|
645 |
static jsdouble FASTCALL |
646 |
math_exp_tn(JSContext *cx, jsdouble d) |
647 |
{ |
648 |
if (!JSDOUBLE_IS_NaN(d)) { |
649 |
if (d == *cx->runtime->jsPositiveInfinity) { |
650 |
return *cx->runtime->jsPositiveInfinity; |
651 |
} |
652 |
if (d == *cx->runtime->jsNegativeInfinity) { |
653 |
return 0.0; |
654 |
} |
655 |
} |
656 |
return exp(d); |
657 |
} |
658 |
|
659 |
JS_DEFINE_TRCINFO_1(math_exp, |
660 |
(2, (static, DOUBLE, math_exp_tn, CONTEXT, DOUBLE, 1, 1))) |
661 |
|
662 |
#else |
663 |
|
664 |
MATH_BUILTIN_1(exp) |
665 |
|
666 |
#endif |
667 |
|
668 |
static jsdouble FASTCALL |
669 |
math_log_tn(jsdouble d) |
670 |
{ |
671 |
#if defined(SOLARIS) && defined(__GNUC__) |
672 |
if (d < 0) |
673 |
return js_NaN; |
674 |
#endif |
675 |
return log(d); |
676 |
} |
677 |
|
678 |
static jsdouble FASTCALL |
679 |
math_max_tn(jsdouble d, jsdouble p) |
680 |
{ |
681 |
if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p)) |
682 |
return js_NaN; |
683 |
|
684 |
if (p == 0 && p == d) { |
685 |
// Max prefers 0.0 to -0.0. |
686 |
if (js_copysign(1.0, d) == -1) |
687 |
return p; |
688 |
return d; |
689 |
} |
690 |
return (p > d) ? p : d; |
691 |
} |
692 |
|
693 |
static jsdouble FASTCALL |
694 |
math_min_tn(jsdouble d, jsdouble p) |
695 |
{ |
696 |
if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p)) |
697 |
return js_NaN; |
698 |
|
699 |
if (p == 0 && p == d) { |
700 |
// Min prefers -0.0 to 0.0. |
701 |
if (js_copysign (1.0, p) == -1) |
702 |
return p; |
703 |
return d; |
704 |
} |
705 |
return (p < d) ? p : d; |
706 |
} |
707 |
|
708 |
static jsdouble FASTCALL |
709 |
math_pow_tn(jsdouble d, jsdouble p) |
710 |
{ |
711 |
if (!JSDOUBLE_IS_FINITE(p) && (d == 1.0 || d == -1.0)) |
712 |
return js_NaN; |
713 |
if (p == 0) |
714 |
return 1.0; |
715 |
return pow(d, p); |
716 |
} |
717 |
|
718 |
static jsdouble FASTCALL |
719 |
math_random_tn(JSRuntime* rt) |
720 |
{ |
721 |
JS_LOCK_RUNTIME(rt); |
722 |
js_random_init(rt); |
723 |
jsdouble z = js_random_nextDouble(rt); |
724 |
JS_UNLOCK_RUNTIME(rt); |
725 |
return z; |
726 |
} |
727 |
|
728 |
static jsdouble FASTCALL |
729 |
math_round_tn(jsdouble x) |
730 |
{ |
731 |
return js_copysign(floor(x + 0.5), x); |
732 |
} |
733 |
|
734 |
static jsdouble FASTCALL |
735 |
math_ceil_tn(jsdouble x) |
736 |
{ |
737 |
return math_ceil_kernel(x); |
738 |
} |
739 |
|
740 |
JS_DEFINE_TRCINFO_1(math_acos, |
741 |
(1, (static, DOUBLE, math_acos_tn, DOUBLE, 1, 1))) |
742 |
JS_DEFINE_TRCINFO_1(math_asin, |
743 |
(1, (static, DOUBLE, math_asin_tn, DOUBLE, 1, 1))) |
744 |
JS_DEFINE_TRCINFO_1(math_atan2, |
745 |
(2, (static, DOUBLE, math_atan2_kernel, DOUBLE, DOUBLE, 1, 1))) |
746 |
JS_DEFINE_TRCINFO_1(math_log, |
747 |
(1, (static, DOUBLE, math_log_tn, DOUBLE, 1, 1))) |
748 |
JS_DEFINE_TRCINFO_1(math_max, |
749 |
(2, (static, DOUBLE, math_max_tn, DOUBLE, DOUBLE, 1, 1))) |
750 |
JS_DEFINE_TRCINFO_1(math_min, |
751 |
(2, (static, DOUBLE, math_min_tn, DOUBLE, DOUBLE, 1, 1))) |
752 |
JS_DEFINE_TRCINFO_1(math_pow, |
753 |
(2, (static, DOUBLE, math_pow_tn, DOUBLE, DOUBLE, 1, 1))) |
754 |
JS_DEFINE_TRCINFO_1(math_random, |
755 |
(1, (static, DOUBLE, math_random_tn, RUNTIME, 0, 0))) |
756 |
JS_DEFINE_TRCINFO_1(math_round, |
757 |
(1, (static, DOUBLE, math_round_tn, DOUBLE, 1, 1))) |
758 |
JS_DEFINE_TRCINFO_1(math_ceil, |
759 |
(1, (static, DOUBLE, math_ceil_tn, DOUBLE, 1, 1))) |
760 |
|
761 |
#endif /* JS_TRACER */ |
762 |
|
763 |
static JSFunctionSpec math_static_methods[] = { |
764 |
#if JS_HAS_TOSOURCE |
765 |
JS_FN(js_toSource_str, math_toSource, 0, 0), |
766 |
#endif |
767 |
JS_TN("abs", math_abs, 1, 0, math_abs_trcinfo), |
768 |
JS_TN("acos", math_acos, 1, 0, math_acos_trcinfo), |
769 |
JS_TN("asin", math_asin, 1, 0, math_asin_trcinfo), |
770 |
JS_TN("atan", math_atan, 1, 0, math_atan_trcinfo), |
771 |
JS_TN("atan2", math_atan2, 2, 0, math_atan2_trcinfo), |
772 |
JS_TN("ceil", math_ceil, 1, 0, math_ceil_trcinfo), |
773 |
JS_TN("cos", math_cos, 1, 0, math_cos_trcinfo), |
774 |
JS_TN("exp", math_exp, 1, 0, math_exp_trcinfo), |
775 |
JS_TN("floor", math_floor, 1, 0, math_floor_trcinfo), |
776 |
JS_TN("log", math_log, 1, 0, math_log_trcinfo), |
777 |
JS_TN("max", math_max, 2, 0, math_max_trcinfo), |
778 |
JS_TN("min", math_min, 2, 0, math_min_trcinfo), |
779 |
JS_TN("pow", math_pow, 2, 0, math_pow_trcinfo), |
780 |
JS_TN("random", math_random, 0, 0, math_random_trcinfo), |
781 |
JS_TN("round", math_round, 1, 0, math_round_trcinfo), |
782 |
JS_TN("sin", math_sin, 1, 0, math_sin_trcinfo), |
783 |
JS_TN("sqrt", math_sqrt, 1, 0, math_sqrt_trcinfo), |
784 |
JS_TN("tan", math_tan, 1, 0, math_tan_trcinfo), |
785 |
JS_FS_END |
786 |
}; |
787 |
|
788 |
JSObject * |
789 |
js_InitMathClass(JSContext *cx, JSObject *obj) |
790 |
{ |
791 |
JSObject *Math; |
792 |
|
793 |
Math = JS_NewObject(cx, &js_MathClass, NULL, obj); |
794 |
if (!Math) |
795 |
return NULL; |
796 |
if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math), |
797 |
JS_PropertyStub, JS_PropertyStub, 0)) { |
798 |
return NULL; |
799 |
} |
800 |
|
801 |
if (!JS_DefineFunctions(cx, Math, math_static_methods)) |
802 |
return NULL; |
803 |
if (!JS_DefineConstDoubles(cx, Math, math_constants)) |
804 |
return NULL; |
805 |
return Math; |
806 |
} |