1 |
siliconforks |
2 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
|
|
* |
3 |
|
|
* ***** BEGIN LICENSE BLOCK ***** |
4 |
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
|
|
* |
6 |
|
|
* The contents of this file are subject to the Mozilla Public License Version |
7 |
|
|
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
|
|
* the License. You may obtain a copy of the License at |
9 |
|
|
* http://www.mozilla.org/MPL/ |
10 |
|
|
* |
11 |
|
|
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
|
|
* for the specific language governing rights and limitations under the |
14 |
|
|
* License. |
15 |
|
|
* |
16 |
|
|
* The Original Code is Mozilla Communicator client code, released |
17 |
|
|
* March 31, 1998. |
18 |
|
|
* |
19 |
|
|
* The Initial Developer of the Original Code is |
20 |
|
|
* Sun Microsystems, Inc. |
21 |
|
|
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
|
|
* the Initial Developer. All Rights Reserved. |
23 |
|
|
* |
24 |
|
|
* Contributor(s): |
25 |
|
|
* |
26 |
|
|
* Alternatively, the contents of this file may be used under the terms of |
27 |
|
|
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
|
|
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
|
|
* of those above. If you wish to allow use of your version of this file only |
31 |
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
|
|
* use your version of this file under the terms of the MPL, indicate your |
33 |
|
|
* decision by deleting the provisions above and replace them with the notice |
34 |
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
|
|
* the provisions above, a recipient may use your version of this file under |
36 |
|
|
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
|
|
* |
38 |
|
|
* ***** END LICENSE BLOCK ***** */ |
39 |
|
|
|
40 |
|
|
/* @(#)e_asin.c 1.3 95/01/18 */ |
41 |
|
|
/* |
42 |
|
|
* ==================================================== |
43 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
44 |
|
|
* |
45 |
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business. |
46 |
|
|
* Permission to use, copy, modify, and distribute this |
47 |
|
|
* software is freely granted, provided that this notice |
48 |
|
|
* is preserved. |
49 |
|
|
* ==================================================== |
50 |
|
|
*/ |
51 |
|
|
|
52 |
|
|
/* __ieee754_asin(x) |
53 |
|
|
* Method : |
54 |
|
|
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
55 |
|
|
* we approximate asin(x) on [0,0.5] by |
56 |
|
|
* asin(x) = x + x*x^2*R(x^2) |
57 |
|
|
* where |
58 |
|
|
* R(x^2) is a rational approximation of (asin(x)-x)/x^3 |
59 |
|
|
* and its remez error is bounded by |
60 |
|
|
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) |
61 |
|
|
* |
62 |
|
|
* For x in [0.5,1] |
63 |
|
|
* asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
64 |
|
|
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
65 |
|
|
* then for x>0.98 |
66 |
|
|
* asin(x) = pi/2 - 2*(s+s*z*R(z)) |
67 |
|
|
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
68 |
|
|
* For x<=0.98, let pio4_hi = pio2_hi/2, then |
69 |
|
|
* f = hi part of s; |
70 |
|
|
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
71 |
|
|
* and |
72 |
|
|
* asin(x) = pi/2 - 2*(s+s*z*R(z)) |
73 |
|
|
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
74 |
|
|
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
75 |
|
|
* |
76 |
|
|
* Special cases: |
77 |
|
|
* if x is NaN, return x itself; |
78 |
|
|
* if |x|>1, return NaN with invalid signal. |
79 |
|
|
* |
80 |
|
|
*/ |
81 |
|
|
|
82 |
|
|
|
83 |
|
|
#include "fdlibm.h" |
84 |
|
|
|
85 |
|
|
#ifdef __STDC__ |
86 |
|
|
static const double |
87 |
|
|
#else |
88 |
|
|
static double |
89 |
|
|
#endif |
90 |
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
91 |
|
|
really_big = 1.000e+300, |
92 |
|
|
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
93 |
|
|
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
94 |
|
|
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
95 |
|
|
/* coefficient for R(x^2) */ |
96 |
|
|
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
97 |
|
|
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
98 |
|
|
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
99 |
|
|
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
100 |
|
|
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
101 |
|
|
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
102 |
|
|
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
103 |
|
|
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
104 |
|
|
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
105 |
|
|
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
106 |
|
|
|
107 |
|
|
#ifdef __STDC__ |
108 |
|
|
double __ieee754_asin(double x) |
109 |
|
|
#else |
110 |
|
|
double __ieee754_asin(x) |
111 |
|
|
double x; |
112 |
|
|
#endif |
113 |
|
|
{ |
114 |
|
|
fd_twoints u; |
115 |
|
|
double w,t,p,q,c,r,s; |
116 |
|
|
int hx,ix; |
117 |
|
|
u.d = x; |
118 |
|
|
hx = __HI(u); |
119 |
|
|
x = u.d; |
120 |
|
|
ix = hx&0x7fffffff; |
121 |
|
|
if(ix>= 0x3ff00000) { /* |x|>= 1 */ |
122 |
|
|
if(((ix-0x3ff00000)|__LO(u))==0) |
123 |
|
|
/* asin(1)=+-pi/2 with inexact */ |
124 |
|
|
return x*pio2_hi+x*pio2_lo; |
125 |
|
|
return (x-x)/(x-x); /* asin(|x|>1) is NaN */ |
126 |
|
|
} else if (ix<0x3fe00000) { /* |x|<0.5 */ |
127 |
|
|
if(ix<0x3e400000) { /* if |x| < 2**-27 */ |
128 |
|
|
if(really_big+x>one) return x;/* return x with inexact if x!=0*/ |
129 |
|
|
} else |
130 |
|
|
t = x*x; |
131 |
|
|
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
132 |
|
|
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
133 |
|
|
w = p/q; |
134 |
|
|
return x+x*w; |
135 |
|
|
} |
136 |
|
|
/* 1> |x|>= 0.5 */ |
137 |
|
|
w = one-fd_fabs(x); |
138 |
|
|
t = w*0.5; |
139 |
|
|
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
140 |
|
|
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
141 |
|
|
s = fd_sqrt(t); |
142 |
|
|
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ |
143 |
|
|
w = p/q; |
144 |
|
|
t = pio2_hi-(2.0*(s+s*w)-pio2_lo); |
145 |
|
|
} else { |
146 |
|
|
u.d = s; |
147 |
|
|
__LO(u) = 0; |
148 |
|
|
w = u.d; |
149 |
|
|
c = (t-w*w)/(s+w); |
150 |
|
|
r = p/q; |
151 |
|
|
p = 2.0*s*r-(pio2_lo-2.0*c); |
152 |
|
|
q = pio4_hi-2.0*w; |
153 |
|
|
t = pio4_hi-(p-q); |
154 |
|
|
} |
155 |
|
|
if(hx>0) return t; else return -t; |
156 |
|
|
} |