1 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
* |
3 |
* ***** BEGIN LICENSE BLOCK ***** |
4 |
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
* |
6 |
* The contents of this file are subject to the Mozilla Public License Version |
7 |
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
* the License. You may obtain a copy of the License at |
9 |
* http://www.mozilla.org/MPL/ |
10 |
* |
11 |
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
* for the specific language governing rights and limitations under the |
14 |
* License. |
15 |
* |
16 |
* The Original Code is Mozilla Communicator client code, released |
17 |
* March 31, 1998. |
18 |
* |
19 |
* The Initial Developer of the Original Code is |
20 |
* Sun Microsystems, Inc. |
21 |
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
* the Initial Developer. All Rights Reserved. |
23 |
* |
24 |
* Contributor(s): |
25 |
* |
26 |
* Alternatively, the contents of this file may be used under the terms of |
27 |
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
* of those above. If you wish to allow use of your version of this file only |
31 |
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
* use your version of this file under the terms of the MPL, indicate your |
33 |
* decision by deleting the provisions above and replace them with the notice |
34 |
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
* the provisions above, a recipient may use your version of this file under |
36 |
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
* |
38 |
* ***** END LICENSE BLOCK ***** */ |
39 |
|
40 |
/* @(#)e_j0.c 1.3 95/01/18 */ |
41 |
/* |
42 |
* ==================================================== |
43 |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
44 |
* |
45 |
* Developed at SunSoft, a Sun Microsystems, Inc. business. |
46 |
* Permission to use, copy, modify, and distribute this |
47 |
* software is freely granted, provided that this notice |
48 |
* is preserved. |
49 |
* ==================================================== |
50 |
*/ |
51 |
|
52 |
/* __ieee754_j0(x), __ieee754_y0(x) |
53 |
* Bessel function of the first and second kinds of order zero. |
54 |
* Method -- j0(x): |
55 |
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... |
56 |
* 2. Reduce x to |x| since j0(x)=j0(-x), and |
57 |
* for x in (0,2) |
58 |
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; |
59 |
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) |
60 |
* for x in (2,inf) |
61 |
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) |
62 |
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) |
63 |
* as follow: |
64 |
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) |
65 |
* = 1/sqrt(2) * (cos(x) + sin(x)) |
66 |
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) |
67 |
* = 1/sqrt(2) * (sin(x) - cos(x)) |
68 |
* (To avoid cancellation, use |
69 |
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
70 |
* to compute the worse one.) |
71 |
* |
72 |
* 3 Special cases |
73 |
* j0(nan)= nan |
74 |
* j0(0) = 1 |
75 |
* j0(inf) = 0 |
76 |
* |
77 |
* Method -- y0(x): |
78 |
* 1. For x<2. |
79 |
* Since |
80 |
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) |
81 |
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. |
82 |
* We use the following function to approximate y0, |
83 |
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 |
84 |
* where |
85 |
* U(z) = u00 + u01*z + ... + u06*z^6 |
86 |
* V(z) = 1 + v01*z + ... + v04*z^4 |
87 |
* with absolute approximation error bounded by 2**-72. |
88 |
* Note: For tiny x, U/V = u0 and j0(x)~1, hence |
89 |
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) |
90 |
* 2. For x>=2. |
91 |
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) |
92 |
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) |
93 |
* by the method mentioned above. |
94 |
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. |
95 |
*/ |
96 |
|
97 |
#include "fdlibm.h" |
98 |
|
99 |
#ifdef __STDC__ |
100 |
static double pzero(double), qzero(double); |
101 |
#else |
102 |
static double pzero(), qzero(); |
103 |
#endif |
104 |
|
105 |
#ifdef __STDC__ |
106 |
static const double |
107 |
#else |
108 |
static double |
109 |
#endif |
110 |
really_big = 1e300, |
111 |
one = 1.0, |
112 |
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
113 |
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
114 |
/* R0/S0 on [0, 2.00] */ |
115 |
R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ |
116 |
R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ |
117 |
R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ |
118 |
R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */ |
119 |
S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */ |
120 |
S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */ |
121 |
S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */ |
122 |
S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ |
123 |
|
124 |
static double zero = 0.0; |
125 |
|
126 |
#ifdef __STDC__ |
127 |
double __ieee754_j0(double x) |
128 |
#else |
129 |
double __ieee754_j0(x) |
130 |
double x; |
131 |
#endif |
132 |
{ |
133 |
fd_twoints un; |
134 |
double z, s,c,ss,cc,r,u,v; |
135 |
int hx,ix; |
136 |
|
137 |
un.d = x; |
138 |
hx = __HI(un); |
139 |
ix = hx&0x7fffffff; |
140 |
if(ix>=0x7ff00000) return one/(x*x); |
141 |
x = fd_fabs(x); |
142 |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
143 |
s = fd_sin(x); |
144 |
c = fd_cos(x); |
145 |
ss = s-c; |
146 |
cc = s+c; |
147 |
if(ix<0x7fe00000) { /* make sure x+x not overflow */ |
148 |
z = -fd_cos(x+x); |
149 |
if ((s*c)<zero) cc = z/ss; |
150 |
else ss = z/cc; |
151 |
} |
152 |
/* |
153 |
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
154 |
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
155 |
*/ |
156 |
if(ix>0x48000000) z = (invsqrtpi*cc)/fd_sqrt(x); |
157 |
else { |
158 |
u = pzero(x); v = qzero(x); |
159 |
z = invsqrtpi*(u*cc-v*ss)/fd_sqrt(x); |
160 |
} |
161 |
return z; |
162 |
} |
163 |
if(ix<0x3f200000) { /* |x| < 2**-13 */ |
164 |
if(really_big+x>one) { /* raise inexact if x != 0 */ |
165 |
if(ix<0x3e400000) return one; /* |x|<2**-27 */ |
166 |
else return one - 0.25*x*x; |
167 |
} |
168 |
} |
169 |
z = x*x; |
170 |
r = z*(R02+z*(R03+z*(R04+z*R05))); |
171 |
s = one+z*(S01+z*(S02+z*(S03+z*S04))); |
172 |
if(ix < 0x3FF00000) { /* |x| < 1.00 */ |
173 |
return one + z*(-0.25+(r/s)); |
174 |
} else { |
175 |
u = 0.5*x; |
176 |
return((one+u)*(one-u)+z*(r/s)); |
177 |
} |
178 |
} |
179 |
|
180 |
#ifdef __STDC__ |
181 |
static const double |
182 |
#else |
183 |
static double |
184 |
#endif |
185 |
u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */ |
186 |
u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */ |
187 |
u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */ |
188 |
u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */ |
189 |
u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */ |
190 |
u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */ |
191 |
u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */ |
192 |
v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */ |
193 |
v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */ |
194 |
v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */ |
195 |
v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ |
196 |
|
197 |
#ifdef __STDC__ |
198 |
double __ieee754_y0(double x) |
199 |
#else |
200 |
double __ieee754_y0(x) |
201 |
double x; |
202 |
#endif |
203 |
{ |
204 |
fd_twoints un; |
205 |
double z, s,c,ss,cc,u,v; |
206 |
int hx,ix,lx; |
207 |
|
208 |
un.d = x; |
209 |
hx = __HI(un); |
210 |
ix = 0x7fffffff&hx; |
211 |
lx = __LO(un); |
212 |
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ |
213 |
if(ix>=0x7ff00000) return one/(x+x*x); |
214 |
if((ix|lx)==0) return -one/zero; |
215 |
if(hx<0) return zero/zero; |
216 |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
217 |
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) |
218 |
* where x0 = x-pi/4 |
219 |
* Better formula: |
220 |
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) |
221 |
* = 1/sqrt(2) * (sin(x) + cos(x)) |
222 |
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
223 |
* = 1/sqrt(2) * (sin(x) - cos(x)) |
224 |
* To avoid cancellation, use |
225 |
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
226 |
* to compute the worse one. |
227 |
*/ |
228 |
s = fd_sin(x); |
229 |
c = fd_cos(x); |
230 |
ss = s-c; |
231 |
cc = s+c; |
232 |
/* |
233 |
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
234 |
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
235 |
*/ |
236 |
if(ix<0x7fe00000) { /* make sure x+x not overflow */ |
237 |
z = -fd_cos(x+x); |
238 |
if ((s*c)<zero) cc = z/ss; |
239 |
else ss = z/cc; |
240 |
} |
241 |
if(ix>0x48000000) z = (invsqrtpi*ss)/fd_sqrt(x); |
242 |
else { |
243 |
u = pzero(x); v = qzero(x); |
244 |
z = invsqrtpi*(u*ss+v*cc)/fd_sqrt(x); |
245 |
} |
246 |
return z; |
247 |
} |
248 |
if(ix<=0x3e400000) { /* x < 2**-27 */ |
249 |
return(u00 + tpi*__ieee754_log(x)); |
250 |
} |
251 |
z = x*x; |
252 |
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); |
253 |
v = one+z*(v01+z*(v02+z*(v03+z*v04))); |
254 |
return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x))); |
255 |
} |
256 |
|
257 |
/* The asymptotic expansions of pzero is |
258 |
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. |
259 |
* For x >= 2, We approximate pzero by |
260 |
* pzero(x) = 1 + (R/S) |
261 |
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 |
262 |
* S = 1 + pS0*s^2 + ... + pS4*s^10 |
263 |
* and |
264 |
* | pzero(x)-1-R/S | <= 2 ** ( -60.26) |
265 |
*/ |
266 |
#ifdef __STDC__ |
267 |
static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
268 |
#else |
269 |
static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
270 |
#endif |
271 |
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
272 |
-7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ |
273 |
-8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ |
274 |
-2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ |
275 |
-2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ |
276 |
-5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ |
277 |
}; |
278 |
#ifdef __STDC__ |
279 |
static const double pS8[5] = { |
280 |
#else |
281 |
static double pS8[5] = { |
282 |
#endif |
283 |
1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ |
284 |
3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ |
285 |
4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ |
286 |
1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ |
287 |
4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ |
288 |
}; |
289 |
|
290 |
#ifdef __STDC__ |
291 |
static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
292 |
#else |
293 |
static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
294 |
#endif |
295 |
-1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ |
296 |
-7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ |
297 |
-4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ |
298 |
-6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ |
299 |
-3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ |
300 |
-3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ |
301 |
}; |
302 |
#ifdef __STDC__ |
303 |
static const double pS5[5] = { |
304 |
#else |
305 |
static double pS5[5] = { |
306 |
#endif |
307 |
6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ |
308 |
1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ |
309 |
5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ |
310 |
9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ |
311 |
2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ |
312 |
}; |
313 |
|
314 |
#ifdef __STDC__ |
315 |
static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
316 |
#else |
317 |
static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
318 |
#endif |
319 |
-2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ |
320 |
-7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ |
321 |
-2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ |
322 |
-2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ |
323 |
-5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ |
324 |
-3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ |
325 |
}; |
326 |
#ifdef __STDC__ |
327 |
static const double pS3[5] = { |
328 |
#else |
329 |
static double pS3[5] = { |
330 |
#endif |
331 |
3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ |
332 |
3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ |
333 |
1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ |
334 |
1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ |
335 |
1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ |
336 |
}; |
337 |
|
338 |
#ifdef __STDC__ |
339 |
static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
340 |
#else |
341 |
static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
342 |
#endif |
343 |
-8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ |
344 |
-7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ |
345 |
-1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ |
346 |
-7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ |
347 |
-1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ |
348 |
-3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ |
349 |
}; |
350 |
#ifdef __STDC__ |
351 |
static const double pS2[5] = { |
352 |
#else |
353 |
static double pS2[5] = { |
354 |
#endif |
355 |
2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ |
356 |
1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ |
357 |
2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ |
358 |
1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ |
359 |
1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ |
360 |
}; |
361 |
|
362 |
#ifdef __STDC__ |
363 |
static double pzero(double x) |
364 |
#else |
365 |
static double pzero(x) |
366 |
double x; |
367 |
#endif |
368 |
{ |
369 |
#ifdef __STDC__ |
370 |
const double *p,*q; |
371 |
#else |
372 |
double *p,*q; |
373 |
#endif |
374 |
fd_twoints u; |
375 |
double z,r,s; |
376 |
int ix; |
377 |
u.d = x; |
378 |
ix = 0x7fffffff&__HI(u); |
379 |
if(ix>=0x40200000) {p = pR8; q= pS8;} |
380 |
else if(ix>=0x40122E8B){p = pR5; q= pS5;} |
381 |
else if(ix>=0x4006DB6D){p = pR3; q= pS3;} |
382 |
else if(ix>=0x40000000){p = pR2; q= pS2;} |
383 |
z = one/(x*x); |
384 |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
385 |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
386 |
return one+ r/s; |
387 |
} |
388 |
|
389 |
|
390 |
/* For x >= 8, the asymptotic expansions of qzero is |
391 |
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x. |
392 |
* We approximate pzero by |
393 |
* qzero(x) = s*(-1.25 + (R/S)) |
394 |
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 |
395 |
* S = 1 + qS0*s^2 + ... + qS5*s^12 |
396 |
* and |
397 |
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) |
398 |
*/ |
399 |
#ifdef __STDC__ |
400 |
static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
401 |
#else |
402 |
static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
403 |
#endif |
404 |
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
405 |
7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ |
406 |
1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ |
407 |
5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ |
408 |
8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ |
409 |
3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ |
410 |
}; |
411 |
#ifdef __STDC__ |
412 |
static const double qS8[6] = { |
413 |
#else |
414 |
static double qS8[6] = { |
415 |
#endif |
416 |
1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ |
417 |
8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ |
418 |
1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ |
419 |
8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ |
420 |
8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ |
421 |
-3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ |
422 |
}; |
423 |
|
424 |
#ifdef __STDC__ |
425 |
static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
426 |
#else |
427 |
static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
428 |
#endif |
429 |
1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ |
430 |
7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ |
431 |
5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ |
432 |
1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ |
433 |
1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ |
434 |
1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ |
435 |
}; |
436 |
#ifdef __STDC__ |
437 |
static const double qS5[6] = { |
438 |
#else |
439 |
static double qS5[6] = { |
440 |
#endif |
441 |
8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ |
442 |
2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ |
443 |
1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ |
444 |
5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ |
445 |
3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ |
446 |
-5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ |
447 |
}; |
448 |
|
449 |
#ifdef __STDC__ |
450 |
static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
451 |
#else |
452 |
static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
453 |
#endif |
454 |
4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ |
455 |
7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ |
456 |
3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ |
457 |
4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ |
458 |
1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ |
459 |
1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ |
460 |
}; |
461 |
#ifdef __STDC__ |
462 |
static const double qS3[6] = { |
463 |
#else |
464 |
static double qS3[6] = { |
465 |
#endif |
466 |
4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ |
467 |
7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ |
468 |
3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ |
469 |
6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ |
470 |
2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ |
471 |
-1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ |
472 |
}; |
473 |
|
474 |
#ifdef __STDC__ |
475 |
static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
476 |
#else |
477 |
static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
478 |
#endif |
479 |
1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ |
480 |
7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ |
481 |
1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ |
482 |
1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ |
483 |
3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ |
484 |
1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ |
485 |
}; |
486 |
#ifdef __STDC__ |
487 |
static const double qS2[6] = { |
488 |
#else |
489 |
static double qS2[6] = { |
490 |
#endif |
491 |
3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ |
492 |
2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ |
493 |
8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ |
494 |
8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ |
495 |
2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ |
496 |
-5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ |
497 |
}; |
498 |
|
499 |
#ifdef __STDC__ |
500 |
static double qzero(double x) |
501 |
#else |
502 |
static double qzero(x) |
503 |
double x; |
504 |
#endif |
505 |
{ |
506 |
#ifdef __STDC__ |
507 |
const double *p,*q; |
508 |
#else |
509 |
double *p,*q; |
510 |
#endif |
511 |
fd_twoints u; |
512 |
double s,r,z; |
513 |
int ix; |
514 |
u.d = x; |
515 |
ix = 0x7fffffff&__HI(u); |
516 |
if(ix>=0x40200000) {p = qR8; q= qS8;} |
517 |
else if(ix>=0x40122E8B){p = qR5; q= qS5;} |
518 |
else if(ix>=0x4006DB6D){p = qR3; q= qS3;} |
519 |
else if(ix>=0x40000000){p = qR2; q= qS2;} |
520 |
z = one/(x*x); |
521 |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
522 |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
523 |
return (-.125 + r/s)/x; |
524 |
} |