1 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
* |
3 |
* ***** BEGIN LICENSE BLOCK ***** |
4 |
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
* |
6 |
* The contents of this file are subject to the Mozilla Public License Version |
7 |
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
* the License. You may obtain a copy of the License at |
9 |
* http://www.mozilla.org/MPL/ |
10 |
* |
11 |
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
* for the specific language governing rights and limitations under the |
14 |
* License. |
15 |
* |
16 |
* The Original Code is Mozilla Communicator client code, released |
17 |
* March 31, 1998. |
18 |
* |
19 |
* The Initial Developer of the Original Code is |
20 |
* Sun Microsystems, Inc. |
21 |
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
* the Initial Developer. All Rights Reserved. |
23 |
* |
24 |
* Contributor(s): |
25 |
* |
26 |
* Alternatively, the contents of this file may be used under the terms of |
27 |
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
* of those above. If you wish to allow use of your version of this file only |
31 |
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
* use your version of this file under the terms of the MPL, indicate your |
33 |
* decision by deleting the provisions above and replace them with the notice |
34 |
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
* the provisions above, a recipient may use your version of this file under |
36 |
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
* |
38 |
* ***** END LICENSE BLOCK ***** */ |
39 |
|
40 |
/* @(#)e_jn.c 1.4 95/01/18 */ |
41 |
/* |
42 |
* ==================================================== |
43 |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
44 |
* |
45 |
* Developed at SunSoft, a Sun Microsystems, Inc. business. |
46 |
* Permission to use, copy, modify, and distribute this |
47 |
* software is freely granted, provided that this notice |
48 |
* is preserved. |
49 |
* ==================================================== |
50 |
*/ |
51 |
|
52 |
/* |
53 |
* __ieee754_jn(n, x), __ieee754_yn(n, x) |
54 |
* floating point Bessel's function of the 1st and 2nd kind |
55 |
* of order n |
56 |
* |
57 |
* Special cases: |
58 |
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
59 |
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
60 |
* Note 2. About jn(n,x), yn(n,x) |
61 |
* For n=0, j0(x) is called, |
62 |
* for n=1, j1(x) is called, |
63 |
* for n<x, forward recursion us used starting |
64 |
* from values of j0(x) and j1(x). |
65 |
* for n>x, a continued fraction approximation to |
66 |
* j(n,x)/j(n-1,x) is evaluated and then backward |
67 |
* recursion is used starting from a supposed value |
68 |
* for j(n,x). The resulting value of j(0,x) is |
69 |
* compared with the actual value to correct the |
70 |
* supposed value of j(n,x). |
71 |
* |
72 |
* yn(n,x) is similar in all respects, except |
73 |
* that forward recursion is used for all |
74 |
* values of n>1. |
75 |
* |
76 |
*/ |
77 |
|
78 |
#include "fdlibm.h" |
79 |
|
80 |
#ifdef __STDC__ |
81 |
static const double |
82 |
#else |
83 |
static double |
84 |
#endif |
85 |
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
86 |
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ |
87 |
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ |
88 |
|
89 |
static double zero = 0.00000000000000000000e+00; |
90 |
|
91 |
#ifdef __STDC__ |
92 |
double __ieee754_jn(int n, double x) |
93 |
#else |
94 |
double __ieee754_jn(n,x) |
95 |
int n; double x; |
96 |
#endif |
97 |
{ |
98 |
fd_twoints u; |
99 |
int i,hx,ix,lx, sgn; |
100 |
double a, b, temp, di; |
101 |
double z, w; |
102 |
|
103 |
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
104 |
* Thus, J(-n,x) = J(n,-x) |
105 |
*/ |
106 |
u.d = x; |
107 |
hx = __HI(u); |
108 |
ix = 0x7fffffff&hx; |
109 |
lx = __LO(u); |
110 |
/* if J(n,NaN) is NaN */ |
111 |
if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x; |
112 |
if(n<0){ |
113 |
n = -n; |
114 |
x = -x; |
115 |
hx ^= 0x80000000; |
116 |
} |
117 |
if(n==0) return(__ieee754_j0(x)); |
118 |
if(n==1) return(__ieee754_j1(x)); |
119 |
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
120 |
x = fd_fabs(x); |
121 |
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */ |
122 |
b = zero; |
123 |
else if((double)n<=x) { |
124 |
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
125 |
if(ix>=0x52D00000) { /* x > 2**302 */ |
126 |
/* (x >> n**2) |
127 |
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
128 |
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
129 |
* Let s=sin(x), c=cos(x), |
130 |
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
131 |
* |
132 |
* n sin(xn)*sqt2 cos(xn)*sqt2 |
133 |
* ---------------------------------- |
134 |
* 0 s-c c+s |
135 |
* 1 -s-c -c+s |
136 |
* 2 -s+c -c-s |
137 |
* 3 s+c c-s |
138 |
*/ |
139 |
switch(n&3) { |
140 |
case 0: temp = fd_cos(x)+fd_sin(x); break; |
141 |
case 1: temp = -fd_cos(x)+fd_sin(x); break; |
142 |
case 2: temp = -fd_cos(x)-fd_sin(x); break; |
143 |
case 3: temp = fd_cos(x)-fd_sin(x); break; |
144 |
} |
145 |
b = invsqrtpi*temp/fd_sqrt(x); |
146 |
} else { |
147 |
a = __ieee754_j0(x); |
148 |
b = __ieee754_j1(x); |
149 |
for(i=1;i<n;i++){ |
150 |
temp = b; |
151 |
b = b*((double)(i+i)/x) - a; /* avoid underflow */ |
152 |
a = temp; |
153 |
} |
154 |
} |
155 |
} else { |
156 |
if(ix<0x3e100000) { /* x < 2**-29 */ |
157 |
/* x is tiny, return the first Taylor expansion of J(n,x) |
158 |
* J(n,x) = 1/n!*(x/2)^n - ... |
159 |
*/ |
160 |
if(n>33) /* underflow */ |
161 |
b = zero; |
162 |
else { |
163 |
temp = x*0.5; b = temp; |
164 |
for (a=one,i=2;i<=n;i++) { |
165 |
a *= (double)i; /* a = n! */ |
166 |
b *= temp; /* b = (x/2)^n */ |
167 |
} |
168 |
b = b/a; |
169 |
} |
170 |
} else { |
171 |
/* use backward recurrence */ |
172 |
/* x x^2 x^2 |
173 |
* J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
174 |
* 2n - 2(n+1) - 2(n+2) |
175 |
* |
176 |
* 1 1 1 |
177 |
* (for large x) = ---- ------ ------ ..... |
178 |
* 2n 2(n+1) 2(n+2) |
179 |
* -- - ------ - ------ - |
180 |
* x x x |
181 |
* |
182 |
* Let w = 2n/x and h=2/x, then the above quotient |
183 |
* is equal to the continued fraction: |
184 |
* 1 |
185 |
* = ----------------------- |
186 |
* 1 |
187 |
* w - ----------------- |
188 |
* 1 |
189 |
* w+h - --------- |
190 |
* w+2h - ... |
191 |
* |
192 |
* To determine how many terms needed, let |
193 |
* Q(0) = w, Q(1) = w(w+h) - 1, |
194 |
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
195 |
* When Q(k) > 1e4 good for single |
196 |
* When Q(k) > 1e9 good for double |
197 |
* When Q(k) > 1e17 good for quadruple |
198 |
*/ |
199 |
/* determine k */ |
200 |
double t,v; |
201 |
double q0,q1,h,tmp; int k,m; |
202 |
w = (n+n)/(double)x; h = 2.0/(double)x; |
203 |
q0 = w; z = w+h; q1 = w*z - 1.0; k=1; |
204 |
while(q1<1.0e9) { |
205 |
k += 1; z += h; |
206 |
tmp = z*q1 - q0; |
207 |
q0 = q1; |
208 |
q1 = tmp; |
209 |
} |
210 |
m = n+n; |
211 |
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
212 |
a = t; |
213 |
b = one; |
214 |
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
215 |
* Hence, if n*(log(2n/x)) > ... |
216 |
* single 8.8722839355e+01 |
217 |
* double 7.09782712893383973096e+02 |
218 |
* long double 1.1356523406294143949491931077970765006170e+04 |
219 |
* then recurrent value may overflow and the result is |
220 |
* likely underflow to zero |
221 |
*/ |
222 |
tmp = n; |
223 |
v = two/x; |
224 |
tmp = tmp*__ieee754_log(fd_fabs(v*tmp)); |
225 |
if(tmp<7.09782712893383973096e+02) { |
226 |
for(i=n-1,di=(double)(i+i);i>0;i--){ |
227 |
temp = b; |
228 |
b *= di; |
229 |
b = b/x - a; |
230 |
a = temp; |
231 |
di -= two; |
232 |
} |
233 |
} else { |
234 |
for(i=n-1,di=(double)(i+i);i>0;i--){ |
235 |
temp = b; |
236 |
b *= di; |
237 |
b = b/x - a; |
238 |
a = temp; |
239 |
di -= two; |
240 |
/* scale b to avoid spurious overflow */ |
241 |
if(b>1e100) { |
242 |
a /= b; |
243 |
t /= b; |
244 |
b = one; |
245 |
} |
246 |
} |
247 |
} |
248 |
b = (t*__ieee754_j0(x)/b); |
249 |
} |
250 |
} |
251 |
if(sgn==1) return -b; else return b; |
252 |
} |
253 |
|
254 |
#ifdef __STDC__ |
255 |
double __ieee754_yn(int n, double x) |
256 |
#else |
257 |
double __ieee754_yn(n,x) |
258 |
int n; double x; |
259 |
#endif |
260 |
{ |
261 |
fd_twoints u; |
262 |
int i,hx,ix,lx; |
263 |
int sign; |
264 |
double a, b, temp; |
265 |
|
266 |
u.d = x; |
267 |
hx = __HI(u); |
268 |
ix = 0x7fffffff&hx; |
269 |
lx = __LO(u); |
270 |
/* if Y(n,NaN) is NaN */ |
271 |
if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x; |
272 |
if((ix|lx)==0) return -one/zero; |
273 |
if(hx<0) return zero/zero; |
274 |
sign = 1; |
275 |
if(n<0){ |
276 |
n = -n; |
277 |
sign = 1 - ((n&1)<<1); |
278 |
} |
279 |
if(n==0) return(__ieee754_y0(x)); |
280 |
if(n==1) return(sign*__ieee754_y1(x)); |
281 |
if(ix==0x7ff00000) return zero; |
282 |
if(ix>=0x52D00000) { /* x > 2**302 */ |
283 |
/* (x >> n**2) |
284 |
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
285 |
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
286 |
* Let s=sin(x), c=cos(x), |
287 |
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
288 |
* |
289 |
* n sin(xn)*sqt2 cos(xn)*sqt2 |
290 |
* ---------------------------------- |
291 |
* 0 s-c c+s |
292 |
* 1 -s-c -c+s |
293 |
* 2 -s+c -c-s |
294 |
* 3 s+c c-s |
295 |
*/ |
296 |
switch(n&3) { |
297 |
case 0: temp = fd_sin(x)-fd_cos(x); break; |
298 |
case 1: temp = -fd_sin(x)-fd_cos(x); break; |
299 |
case 2: temp = -fd_sin(x)+fd_cos(x); break; |
300 |
case 3: temp = fd_sin(x)+fd_cos(x); break; |
301 |
} |
302 |
b = invsqrtpi*temp/fd_sqrt(x); |
303 |
} else { |
304 |
a = __ieee754_y0(x); |
305 |
b = __ieee754_y1(x); |
306 |
/* quit if b is -inf */ |
307 |
u.d = b; |
308 |
for(i=1;i<n&&(__HI(u) != 0xfff00000);i++){ |
309 |
temp = b; |
310 |
b = ((double)(i+i)/x)*b - a; |
311 |
a = temp; |
312 |
} |
313 |
} |
314 |
if(sign>0) return b; else return -b; |
315 |
} |