/[jscoverage]/trunk/js/src/fdlibm/e_lgamma_r.c
ViewVC logotype

Contents of /trunk/js/src/fdlibm/e_lgamma_r.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2 - (show annotations)
Wed Aug 1 13:51:53 2007 UTC (14 years, 9 months ago) by siliconforks
File MIME type: text/plain
File size: 12959 byte(s)
Initial import.

1 /* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 *
3 * ***** BEGIN LICENSE BLOCK *****
4 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 *
6 * The contents of this file are subject to the Mozilla Public License Version
7 * 1.1 (the "License"); you may not use this file except in compliance with
8 * the License. You may obtain a copy of the License at
9 * http://www.mozilla.org/MPL/
10 *
11 * Software distributed under the License is distributed on an "AS IS" basis,
12 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13 * for the specific language governing rights and limitations under the
14 * License.
15 *
16 * The Original Code is Mozilla Communicator client code, released
17 * March 31, 1998.
18 *
19 * The Initial Developer of the Original Code is
20 * Sun Microsystems, Inc.
21 * Portions created by the Initial Developer are Copyright (C) 1998
22 * the Initial Developer. All Rights Reserved.
23 *
24 * Contributor(s):
25 *
26 * Alternatively, the contents of this file may be used under the terms of
27 * either of the GNU General Public License Version 2 or later (the "GPL"),
28 * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29 * in which case the provisions of the GPL or the LGPL are applicable instead
30 * of those above. If you wish to allow use of your version of this file only
31 * under the terms of either the GPL or the LGPL, and not to allow others to
32 * use your version of this file under the terms of the MPL, indicate your
33 * decision by deleting the provisions above and replace them with the notice
34 * and other provisions required by the GPL or the LGPL. If you do not delete
35 * the provisions above, a recipient may use your version of this file under
36 * the terms of any one of the MPL, the GPL or the LGPL.
37 *
38 * ***** END LICENSE BLOCK ***** */
39
40 /* @(#)e_lgamma_r.c 1.3 95/01/18 */
41 /*
42 * ====================================================
43 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
44 *
45 * Developed at SunSoft, a Sun Microsystems, Inc. business.
46 * Permission to use, copy, modify, and distribute this
47 * software is freely granted, provided that this notice
48 * is preserved.
49 * ====================================================
50 *
51 */
52
53 /* __ieee754_lgamma_r(x, signgamp)
54 * Reentrant version of the logarithm of the Gamma function
55 * with user provide pointer for the sign of Gamma(x).
56 *
57 * Method:
58 * 1. Argument Reduction for 0 < x <= 8
59 * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
60 * reduce x to a number in [1.5,2.5] by
61 * lgamma(1+s) = log(s) + lgamma(s)
62 * for example,
63 * lgamma(7.3) = log(6.3) + lgamma(6.3)
64 * = log(6.3*5.3) + lgamma(5.3)
65 * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
66 * 2. Polynomial approximation of lgamma around its
67 * minimun ymin=1.461632144968362245 to maintain monotonicity.
68 * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
69 * Let z = x-ymin;
70 * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
71 * where
72 * poly(z) is a 14 degree polynomial.
73 * 2. Rational approximation in the primary interval [2,3]
74 * We use the following approximation:
75 * s = x-2.0;
76 * lgamma(x) = 0.5*s + s*P(s)/Q(s)
77 * with accuracy
78 * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
79 * Our algorithms are based on the following observation
80 *
81 * zeta(2)-1 2 zeta(3)-1 3
82 * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
83 * 2 3
84 *
85 * where Euler = 0.5771... is the Euler constant, which is very
86 * close to 0.5.
87 *
88 * 3. For x>=8, we have
89 * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
90 * (better formula:
91 * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
92 * Let z = 1/x, then we approximation
93 * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
94 * by
95 * 3 5 11
96 * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
97 * where
98 * |w - f(z)| < 2**-58.74
99 *
100 * 4. For negative x, since (G is gamma function)
101 * -x*G(-x)*G(x) = pi/sin(pi*x),
102 * we have
103 * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
104 * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
105 * Hence, for x<0, signgam = sign(sin(pi*x)) and
106 * lgamma(x) = log(|Gamma(x)|)
107 * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
108 * Note: one should avoid compute pi*(-x) directly in the
109 * computation of sin(pi*(-x)).
110 *
111 * 5. Special Cases
112 * lgamma(2+s) ~ s*(1-Euler) for tiny s
113 * lgamma(1)=lgamma(2)=0
114 * lgamma(x) ~ -log(x) for tiny x
115 * lgamma(0) = lgamma(inf) = inf
116 * lgamma(-integer) = +-inf
117 *
118 */
119
120 #include "fdlibm.h"
121
122 #ifdef __STDC__
123 static const double
124 #else
125 static double
126 #endif
127 two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
128 half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
129 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
130 pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
131 a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
132 a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
133 a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
134 a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
135 a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
136 a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
137 a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
138 a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
139 a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
140 a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
141 a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
142 a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
143 tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
144 tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
145 /* tt = -(tail of tf) */
146 tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
147 t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
148 t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
149 t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
150 t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
151 t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
152 t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
153 t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
154 t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
155 t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
156 t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
157 t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
158 t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
159 t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
160 t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
161 t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
162 u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
163 u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
164 u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
165 u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
166 u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
167 u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
168 v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
169 v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
170 v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
171 v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
172 v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
173 s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
174 s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
175 s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
176 s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
177 s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
178 s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
179 s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
180 r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
181 r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
182 r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
183 r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
184 r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
185 r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
186 w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
187 w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
188 w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
189 w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
190 w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
191 w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
192 w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
193
194 static double zero= 0.00000000000000000000e+00;
195
196 #ifdef __STDC__
197 static double sin_pi(double x)
198 #else
199 static double sin_pi(x)
200 double x;
201 #endif
202 {
203 fd_twoints u;
204 double y,z;
205 int n,ix;
206
207 u.d = x;
208 ix = 0x7fffffff&__HI(u);
209
210 if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
211 y = -x; /* x is assume negative */
212
213 /*
214 * argument reduction, make sure inexact flag not raised if input
215 * is an integer
216 */
217 z = fd_floor(y);
218 if(z!=y) { /* inexact anyway */
219 y *= 0.5;
220 y = 2.0*(y - fd_floor(y)); /* y = |x| mod 2.0 */
221 n = (int) (y*4.0);
222 } else {
223 if(ix>=0x43400000) {
224 y = zero; n = 0; /* y must be even */
225 } else {
226 if(ix<0x43300000) z = y+two52; /* exact */
227 u.d = z;
228 n = __LO(u)&1; /* lower word of z */
229 y = n;
230 n<<= 2;
231 }
232 }
233 switch (n) {
234 case 0: y = __kernel_sin(pi*y,zero,0); break;
235 case 1:
236 case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
237 case 3:
238 case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
239 case 5:
240 case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
241 default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
242 }
243 return -y;
244 }
245
246
247 #ifdef __STDC__
248 double __ieee754_lgamma_r(double x, int *signgamp)
249 #else
250 double __ieee754_lgamma_r(x,signgamp)
251 double x; int *signgamp;
252 #endif
253 {
254 fd_twoints u;
255 double t,y,z,nadj,p,p1,p2,p3,q,r,w;
256 int i,hx,lx,ix;
257
258 u.d = x;
259 hx = __HI(u);
260 lx = __LO(u);
261
262 /* purge off +-inf, NaN, +-0, and negative arguments */
263 *signgamp = 1;
264 ix = hx&0x7fffffff;
265 if(ix>=0x7ff00000) return x*x;
266 if((ix|lx)==0) return one/zero;
267 if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */
268 if(hx<0) {
269 *signgamp = -1;
270 return -__ieee754_log(-x);
271 } else return -__ieee754_log(x);
272 }
273 if(hx<0) {
274 if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
275 return one/zero;
276 t = sin_pi(x);
277 if(t==zero) return one/zero; /* -integer */
278 nadj = __ieee754_log(pi/fd_fabs(t*x));
279 if(t<zero) *signgamp = -1;
280 x = -x;
281 }
282
283 /* purge off 1 and 2 */
284 if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
285 /* for x < 2.0 */
286 else if(ix<0x40000000) {
287 if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
288 r = -__ieee754_log(x);
289 if(ix>=0x3FE76944) {y = one-x; i= 0;}
290 else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
291 else {y = x; i=2;}
292 } else {
293 r = zero;
294 if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
295 else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
296 else {y=x-one;i=2;}
297 }
298 switch(i) {
299 case 0:
300 z = y*y;
301 p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
302 p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
303 p = y*p1+p2;
304 r += (p-0.5*y); break;
305 case 1:
306 z = y*y;
307 w = z*y;
308 p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
309 p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
310 p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
311 p = z*p1-(tt-w*(p2+y*p3));
312 r += (tf + p); break;
313 case 2:
314 p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
315 p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
316 r += (-0.5*y + p1/p2);
317 }
318 }
319 else if(ix<0x40200000) { /* x < 8.0 */
320 i = (int)x;
321 t = zero;
322 y = x-(double)i;
323 p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
324 q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
325 r = half*y+p/q;
326 z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
327 switch(i) {
328 case 7: z *= (y+6.0); /* FALLTHRU */
329 case 6: z *= (y+5.0); /* FALLTHRU */
330 case 5: z *= (y+4.0); /* FALLTHRU */
331 case 4: z *= (y+3.0); /* FALLTHRU */
332 case 3: z *= (y+2.0); /* FALLTHRU */
333 r += __ieee754_log(z); break;
334 }
335 /* 8.0 <= x < 2**58 */
336 } else if (ix < 0x43900000) {
337 t = __ieee754_log(x);
338 z = one/x;
339 y = z*z;
340 w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
341 r = (x-half)*(t-one)+w;
342 } else
343 /* 2**58 <= x <= inf */
344 r = x*(__ieee754_log(x)-one);
345 if(hx<0) r = nadj - r;
346 return r;
347 }

  ViewVC Help
Powered by ViewVC 1.1.24