1 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
* |
3 |
* ***** BEGIN LICENSE BLOCK ***** |
4 |
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
* |
6 |
* The contents of this file are subject to the Mozilla Public License Version |
7 |
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
* the License. You may obtain a copy of the License at |
9 |
* http://www.mozilla.org/MPL/ |
10 |
* |
11 |
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
* for the specific language governing rights and limitations under the |
14 |
* License. |
15 |
* |
16 |
* The Original Code is Mozilla Communicator client code, released |
17 |
* March 31, 1998. |
18 |
* |
19 |
* The Initial Developer of the Original Code is |
20 |
* Sun Microsystems, Inc. |
21 |
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
* the Initial Developer. All Rights Reserved. |
23 |
* |
24 |
* Contributor(s): |
25 |
* |
26 |
* Alternatively, the contents of this file may be used under the terms of |
27 |
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
* of those above. If you wish to allow use of your version of this file only |
31 |
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
* use your version of this file under the terms of the MPL, indicate your |
33 |
* decision by deleting the provisions above and replace them with the notice |
34 |
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
* the provisions above, a recipient may use your version of this file under |
36 |
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
* |
38 |
* ***** END LICENSE BLOCK ***** */ |
39 |
|
40 |
/* @(#)e_pow.c 1.3 95/01/18 */ |
41 |
/* |
42 |
* ==================================================== |
43 |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
44 |
* |
45 |
* Developed at SunSoft, a Sun Microsystems, Inc. business. |
46 |
* Permission to use, copy, modify, and distribute this |
47 |
* software is freely granted, provided that this notice |
48 |
* is preserved. |
49 |
* ==================================================== |
50 |
*/ |
51 |
|
52 |
/* __ieee754_pow(x,y) return x**y |
53 |
* |
54 |
* n |
55 |
* Method: Let x = 2 * (1+f) |
56 |
* 1. Compute and return log2(x) in two pieces: |
57 |
* log2(x) = w1 + w2, |
58 |
* where w1 has 53-24 = 29 bit trailing zeros. |
59 |
* 2. Perform y*log2(x) = n+y' by simulating muti-precision |
60 |
* arithmetic, where |y'|<=0.5. |
61 |
* 3. Return x**y = 2**n*exp(y'*log2) |
62 |
* |
63 |
* Special cases: |
64 |
* 1. (anything) ** 0 is 1 |
65 |
* 2. (anything) ** 1 is itself |
66 |
* 3. (anything) ** NAN is NAN |
67 |
* 4. NAN ** (anything except 0) is NAN |
68 |
* 5. +-(|x| > 1) ** +INF is +INF |
69 |
* 6. +-(|x| > 1) ** -INF is +0 |
70 |
* 7. +-(|x| < 1) ** +INF is +0 |
71 |
* 8. +-(|x| < 1) ** -INF is +INF |
72 |
* 9. +-1 ** +-INF is NAN |
73 |
* 10. +0 ** (+anything except 0, NAN) is +0 |
74 |
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
75 |
* 12. +0 ** (-anything except 0, NAN) is +INF |
76 |
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
77 |
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
78 |
* 15. +INF ** (+anything except 0,NAN) is +INF |
79 |
* 16. +INF ** (-anything except 0,NAN) is +0 |
80 |
* 17. -INF ** (anything) = -0 ** (-anything) |
81 |
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
82 |
* 19. (-anything except 0 and inf) ** (non-integer) is NAN |
83 |
* |
84 |
* Accuracy: |
85 |
* pow(x,y) returns x**y nearly rounded. In particular |
86 |
* pow(integer,integer) |
87 |
* always returns the correct integer provided it is |
88 |
* representable. |
89 |
* |
90 |
* Constants : |
91 |
* The hexadecimal values are the intended ones for the following |
92 |
* constants. The decimal values may be used, provided that the |
93 |
* compiler will convert from decimal to binary accurately enough |
94 |
* to produce the hexadecimal values shown. |
95 |
*/ |
96 |
|
97 |
#include "fdlibm.h" |
98 |
|
99 |
#if defined(_MSC_VER) |
100 |
/* Microsoft Compiler */ |
101 |
#pragma warning( disable : 4723 ) /* disables potential divide by 0 warning */ |
102 |
#endif |
103 |
|
104 |
#ifdef __STDC__ |
105 |
static const double |
106 |
#else |
107 |
static double |
108 |
#endif |
109 |
bp[] = {1.0, 1.5,}, |
110 |
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
111 |
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
112 |
zero = 0.0, |
113 |
one = 1.0, |
114 |
two = 2.0, |
115 |
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
116 |
really_big = 1.0e300, |
117 |
tiny = 1.0e-300, |
118 |
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
119 |
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
120 |
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
121 |
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
122 |
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
123 |
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
124 |
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
125 |
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
126 |
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
127 |
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
128 |
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
129 |
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
130 |
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
131 |
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
132 |
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
133 |
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
134 |
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
135 |
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
136 |
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
137 |
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
138 |
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
139 |
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
140 |
|
141 |
#ifdef __STDC__ |
142 |
double __ieee754_pow(double x, double y) |
143 |
#else |
144 |
double __ieee754_pow(x,y) |
145 |
double x, y; |
146 |
#endif |
147 |
{ |
148 |
fd_twoints ux, uy, uz; |
149 |
double y1,t1,p_h,t,z,ax; |
150 |
double z_h,z_l,p_l; |
151 |
double t2,r,s,u,v,w; |
152 |
int i,j,k,yisint,n; |
153 |
int hx,hy,ix,iy; |
154 |
unsigned lx,ly; |
155 |
|
156 |
ux.d = x; uy.d = y; |
157 |
hx = __HI(ux); lx = __LO(ux); |
158 |
hy = __HI(uy); ly = __LO(uy); |
159 |
ix = hx&0x7fffffff; iy = hy&0x7fffffff; |
160 |
|
161 |
/* y==zero: x**0 = 1 */ |
162 |
if((iy|ly)==0) return one; |
163 |
|
164 |
/* +-NaN return x+y */ |
165 |
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
166 |
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
167 |
return x+y; |
168 |
|
169 |
/* determine if y is an odd int when x < 0 |
170 |
* yisint = 0 ... y is not an integer |
171 |
* yisint = 1 ... y is an odd int |
172 |
* yisint = 2 ... y is an even int |
173 |
*/ |
174 |
yisint = 0; |
175 |
if(hx<0) { |
176 |
if(iy>=0x43400000) yisint = 2; /* even integer y */ |
177 |
else if(iy>=0x3ff00000) { |
178 |
k = (iy>>20)-0x3ff; /* exponent */ |
179 |
if(k>20) { |
180 |
j = ly>>(52-k); |
181 |
if((j<<(52-k))==(int)ly) yisint = 2-(j&1); |
182 |
} else if(ly==0) { |
183 |
j = iy>>(20-k); |
184 |
if((j<<(20-k))==iy) yisint = 2-(j&1); |
185 |
} |
186 |
} |
187 |
} |
188 |
|
189 |
/* special value of y */ |
190 |
if(ly==0) { |
191 |
if (iy==0x7ff00000) { /* y is +-inf */ |
192 |
if(((ix-0x3ff00000)|lx)==0) |
193 |
#ifdef _WIN32 |
194 |
/* VC++ optimizer reduces y - y to 0 */ |
195 |
return y / y; |
196 |
#else |
197 |
return y - y; /* inf**+-1 is NaN */ |
198 |
#endif |
199 |
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ |
200 |
return (hy>=0)? y: zero; |
201 |
else /* (|x|<1)**-,+inf = inf,0 */ |
202 |
return (hy<0)?-y: zero; |
203 |
} |
204 |
if(iy==0x3ff00000) { /* y is +-1 */ |
205 |
if(hy<0) return one/x; else return x; |
206 |
} |
207 |
if(hy==0x40000000) return x*x; /* y is 2 */ |
208 |
if(hy==0x3fe00000) { /* y is 0.5 */ |
209 |
if(hx>=0) /* x >= +0 */ |
210 |
return fd_sqrt(x); |
211 |
} |
212 |
} |
213 |
|
214 |
ax = fd_fabs(x); |
215 |
/* special value of x */ |
216 |
if(lx==0) { |
217 |
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
218 |
z = ax; /*x is +-0,+-inf,+-1*/ |
219 |
if(hy<0) z = one/z; /* z = (1/|x|) */ |
220 |
if(hx<0) { |
221 |
if(((ix-0x3ff00000)|yisint)==0) { |
222 |
z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
223 |
} else if(yisint==1) { |
224 |
#ifdef HPUX |
225 |
uz.d = z; |
226 |
__HI(uz) ^= 1<<31; /* some HPUXes cannot negate 0.. */ |
227 |
z = uz.d; |
228 |
#else |
229 |
z = -z; /* (x<0)**odd = -(|x|**odd) */ |
230 |
#endif |
231 |
} |
232 |
} |
233 |
return z; |
234 |
} |
235 |
} |
236 |
|
237 |
/* (x<0)**(non-int) is NaN */ |
238 |
if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x); |
239 |
|
240 |
/* |y| is really_big */ |
241 |
if(iy>0x41e00000) { /* if |y| > 2**31 */ |
242 |
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
243 |
if(ix<=0x3fefffff) return (hy<0)? really_big*really_big:tiny*tiny; |
244 |
if(ix>=0x3ff00000) return (hy>0)? really_big*really_big:tiny*tiny; |
245 |
} |
246 |
/* over/underflow if x is not close to one */ |
247 |
if(ix<0x3fefffff) return (hy<0)? really_big*really_big:tiny*tiny; |
248 |
if(ix>0x3ff00000) return (hy>0)? really_big*really_big:tiny*tiny; |
249 |
/* now |1-x| is tiny <= 2**-20, suffice to compute |
250 |
log(x) by x-x^2/2+x^3/3-x^4/4 */ |
251 |
t = x-1; /* t has 20 trailing zeros */ |
252 |
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); |
253 |
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
254 |
v = t*ivln2_l-w*ivln2; |
255 |
t1 = u+v; |
256 |
uz.d = t1; |
257 |
__LO(uz) = 0; |
258 |
t1 = uz.d; |
259 |
t2 = v-(t1-u); |
260 |
} else { |
261 |
double s_h,t_h; |
262 |
double s2,s_l,t_l; |
263 |
n = 0; |
264 |
/* take care subnormal number */ |
265 |
if(ix<0x00100000) |
266 |
{ax *= two53; n -= 53; uz.d = ax; ix = __HI(uz); } |
267 |
n += ((ix)>>20)-0x3ff; |
268 |
j = ix&0x000fffff; |
269 |
/* determine interval */ |
270 |
ix = j|0x3ff00000; /* normalize ix */ |
271 |
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
272 |
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
273 |
else {k=0;n+=1;ix -= 0x00100000;} |
274 |
uz.d = ax; |
275 |
__HI(uz) = ix; |
276 |
ax = uz.d; |
277 |
|
278 |
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
279 |
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
280 |
v = one/(ax+bp[k]); |
281 |
s = u*v; |
282 |
s_h = s; |
283 |
uz.d = s_h; |
284 |
__LO(uz) = 0; |
285 |
s_h = uz.d; |
286 |
/* t_h=ax+bp[k] High */ |
287 |
t_h = zero; |
288 |
uz.d = t_h; |
289 |
__HI(uz)=((ix>>1)|0x20000000)+0x00080000+(k<<18); |
290 |
t_h = uz.d; |
291 |
t_l = ax - (t_h-bp[k]); |
292 |
s_l = v*((u-s_h*t_h)-s_h*t_l); |
293 |
/* compute log(ax) */ |
294 |
s2 = s*s; |
295 |
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
296 |
r += s_l*(s_h+s); |
297 |
s2 = s_h*s_h; |
298 |
t_h = 3.0+s2+r; |
299 |
uz.d = t_h; |
300 |
__LO(uz) = 0; |
301 |
t_h = uz.d; |
302 |
t_l = r-((t_h-3.0)-s2); |
303 |
/* u+v = s*(1+...) */ |
304 |
u = s_h*t_h; |
305 |
v = s_l*t_h+t_l*s; |
306 |
/* 2/(3log2)*(s+...) */ |
307 |
p_h = u+v; |
308 |
uz.d = p_h; |
309 |
__LO(uz) = 0; |
310 |
p_h = uz.d; |
311 |
p_l = v-(p_h-u); |
312 |
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
313 |
z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
314 |
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
315 |
t = (double)n; |
316 |
t1 = (((z_h+z_l)+dp_h[k])+t); |
317 |
uz.d = t1; |
318 |
__LO(uz) = 0; |
319 |
t1 = uz.d; |
320 |
t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
321 |
} |
322 |
|
323 |
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
324 |
if((((hx>>31)+1)|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ |
325 |
|
326 |
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
327 |
y1 = y; |
328 |
uy.d = y1; |
329 |
__LO(uy) = 0; |
330 |
y1 = uy.d; |
331 |
p_l = (y-y1)*t1+y*t2; |
332 |
p_h = y1*t1; |
333 |
z = p_l+p_h; |
334 |
uz.d = z; |
335 |
j = __HI(uz); |
336 |
i = __LO(uz); |
337 |
|
338 |
if (j>=0x40900000) { /* z >= 1024 */ |
339 |
if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
340 |
return s*really_big*really_big; /* overflow */ |
341 |
else { |
342 |
if(p_l+ovt>z-p_h) return s*really_big*really_big; /* overflow */ |
343 |
} |
344 |
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
345 |
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
346 |
return s*tiny*tiny; /* underflow */ |
347 |
else { |
348 |
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
349 |
} |
350 |
} |
351 |
/* |
352 |
* compute 2**(p_h+p_l) |
353 |
*/ |
354 |
i = j&0x7fffffff; |
355 |
k = (i>>20)-0x3ff; |
356 |
n = 0; |
357 |
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
358 |
n = j+(0x00100000>>(k+1)); |
359 |
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
360 |
t = zero; |
361 |
uz.d = t; |
362 |
__HI(uz) = (n&~(0x000fffff>>k)); |
363 |
t = uz.d; |
364 |
n = ((n&0x000fffff)|0x00100000)>>(20-k); |
365 |
if(j<0) n = -n; |
366 |
p_h -= t; |
367 |
} |
368 |
t = p_l+p_h; |
369 |
uz.d = t; |
370 |
__LO(uz) = 0; |
371 |
t = uz.d; |
372 |
u = t*lg2_h; |
373 |
v = (p_l-(t-p_h))*lg2+t*lg2_l; |
374 |
z = u+v; |
375 |
w = v-(z-u); |
376 |
t = z*z; |
377 |
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
378 |
r = (z*t1)/(t1-two)-(w+z*w); |
379 |
z = one-(r-z); |
380 |
uz.d = z; |
381 |
j = __HI(uz); |
382 |
j += (n<<20); |
383 |
if((j>>20)<=0) z = fd_scalbn(z,n); /* subnormal output */ |
384 |
else { uz.d = z; __HI(uz) += (n<<20); z = uz.d; } |
385 |
return s*z; |
386 |
} |