1 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
* |
3 |
* ***** BEGIN LICENSE BLOCK ***** |
4 |
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
* |
6 |
* The contents of this file are subject to the Mozilla Public License Version |
7 |
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
* the License. You may obtain a copy of the License at |
9 |
* http://www.mozilla.org/MPL/ |
10 |
* |
11 |
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
* for the specific language governing rights and limitations under the |
14 |
* License. |
15 |
* |
16 |
* The Original Code is Mozilla Communicator client code, released |
17 |
* March 31, 1998. |
18 |
* |
19 |
* The Initial Developer of the Original Code is |
20 |
* Sun Microsystems, Inc. |
21 |
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
* the Initial Developer. All Rights Reserved. |
23 |
* |
24 |
* Contributor(s): |
25 |
* |
26 |
* Alternatively, the contents of this file may be used under the terms of |
27 |
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
* of those above. If you wish to allow use of your version of this file only |
31 |
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
* use your version of this file under the terms of the MPL, indicate your |
33 |
* decision by deleting the provisions above and replace them with the notice |
34 |
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
* the provisions above, a recipient may use your version of this file under |
36 |
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
* |
38 |
* ***** END LICENSE BLOCK ***** */ |
39 |
|
40 |
/* @(#)k_rem_pio2.c 1.3 95/01/18 */ |
41 |
/* |
42 |
* ==================================================== |
43 |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
44 |
* |
45 |
* Developed at SunSoft, a Sun Microsystems, Inc. business. |
46 |
* Permission to use, copy, modify, and distribute this |
47 |
* software is freely granted, provided that this notice |
48 |
* is preserved. |
49 |
* ==================================================== |
50 |
*/ |
51 |
|
52 |
/* |
53 |
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
54 |
* double x[],y[]; int e0,nx,prec; int ipio2[]; |
55 |
* |
56 |
* __kernel_rem_pio2 return the last three digits of N with |
57 |
* y = x - N*pi/2 |
58 |
* so that |y| < pi/2. |
59 |
* |
60 |
* The method is to compute the integer (mod 8) and fraction parts of |
61 |
* (2/pi)*x without doing the full multiplication. In general we |
62 |
* skip the part of the product that are known to be a huge integer ( |
63 |
* more accurately, = 0 mod 8 ). Thus the number of operations are |
64 |
* independent of the exponent of the input. |
65 |
* |
66 |
* (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
67 |
* |
68 |
* Input parameters: |
69 |
* x[] The input value (must be positive) is broken into nx |
70 |
* pieces of 24-bit integers in double precision format. |
71 |
* x[i] will be the i-th 24 bit of x. The scaled exponent |
72 |
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
73 |
* match x's up to 24 bits. |
74 |
* |
75 |
* Example of breaking a double positive z into x[0]+x[1]+x[2]: |
76 |
* e0 = ilogb(z)-23 |
77 |
* z = scalbn(z,-e0) |
78 |
* for i = 0,1,2 |
79 |
* x[i] = floor(z) |
80 |
* z = (z-x[i])*2**24 |
81 |
* |
82 |
* |
83 |
* y[] ouput result in an array of double precision numbers. |
84 |
* The dimension of y[] is: |
85 |
* 24-bit precision 1 |
86 |
* 53-bit precision 2 |
87 |
* 64-bit precision 2 |
88 |
* 113-bit precision 3 |
89 |
* The actual value is the sum of them. Thus for 113-bit |
90 |
* precison, one may have to do something like: |
91 |
* |
92 |
* long double t,w,r_head, r_tail; |
93 |
* t = (long double)y[2] + (long double)y[1]; |
94 |
* w = (long double)y[0]; |
95 |
* r_head = t+w; |
96 |
* r_tail = w - (r_head - t); |
97 |
* |
98 |
* e0 The exponent of x[0] |
99 |
* |
100 |
* nx dimension of x[] |
101 |
* |
102 |
* prec an integer indicating the precision: |
103 |
* 0 24 bits (single) |
104 |
* 1 53 bits (double) |
105 |
* 2 64 bits (extended) |
106 |
* 3 113 bits (quad) |
107 |
* |
108 |
* ipio2[] |
109 |
* integer array, contains the (24*i)-th to (24*i+23)-th |
110 |
* bit of 2/pi after binary point. The corresponding |
111 |
* floating value is |
112 |
* |
113 |
* ipio2[i] * 2^(-24(i+1)). |
114 |
* |
115 |
* External function: |
116 |
* double scalbn(), floor(); |
117 |
* |
118 |
* |
119 |
* Here is the description of some local variables: |
120 |
* |
121 |
* jk jk+1 is the initial number of terms of ipio2[] needed |
122 |
* in the computation. The recommended value is 2,3,4, |
123 |
* 6 for single, double, extended,and quad. |
124 |
* |
125 |
* jz local integer variable indicating the number of |
126 |
* terms of ipio2[] used. |
127 |
* |
128 |
* jx nx - 1 |
129 |
* |
130 |
* jv index for pointing to the suitable ipio2[] for the |
131 |
* computation. In general, we want |
132 |
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
133 |
* is an integer. Thus |
134 |
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
135 |
* Hence jv = max(0,(e0-3)/24). |
136 |
* |
137 |
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
138 |
* |
139 |
* q[] double array with integral value, representing the |
140 |
* 24-bits chunk of the product of x and 2/pi. |
141 |
* |
142 |
* q0 the corresponding exponent of q[0]. Note that the |
143 |
* exponent for q[i] would be q0-24*i. |
144 |
* |
145 |
* PIo2[] double precision array, obtained by cutting pi/2 |
146 |
* into 24 bits chunks. |
147 |
* |
148 |
* f[] ipio2[] in floating point |
149 |
* |
150 |
* iq[] integer array by breaking up q[] in 24-bits chunk. |
151 |
* |
152 |
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
153 |
* |
154 |
* ih integer. If >0 it indicates q[] is >= 0.5, hence |
155 |
* it also indicates the *sign* of the result. |
156 |
* |
157 |
*/ |
158 |
|
159 |
|
160 |
/* |
161 |
* Constants: |
162 |
* The hexadecimal values are the intended ones for the following |
163 |
* constants. The decimal values may be used, provided that the |
164 |
* compiler will convert from decimal to binary accurately enough |
165 |
* to produce the hexadecimal values shown. |
166 |
*/ |
167 |
|
168 |
#include "fdlibm.h" |
169 |
|
170 |
#ifdef __STDC__ |
171 |
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ |
172 |
#else |
173 |
static int init_jk[] = {2,3,4,6}; |
174 |
#endif |
175 |
|
176 |
#ifdef __STDC__ |
177 |
static const double PIo2[] = { |
178 |
#else |
179 |
static double PIo2[] = { |
180 |
#endif |
181 |
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
182 |
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
183 |
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
184 |
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
185 |
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
186 |
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
187 |
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
188 |
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
189 |
}; |
190 |
|
191 |
#ifdef __STDC__ |
192 |
static const double |
193 |
#else |
194 |
static double |
195 |
#endif |
196 |
zero = 0.0, |
197 |
one = 1.0, |
198 |
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
199 |
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
200 |
|
201 |
#ifdef __STDC__ |
202 |
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) |
203 |
#else |
204 |
int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
205 |
double x[], y[]; int e0,nx,prec; int ipio2[]; |
206 |
#endif |
207 |
{ |
208 |
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
209 |
double z,fw,f[20],fq[20],q[20]; |
210 |
|
211 |
/* initialize jk*/ |
212 |
jk = init_jk[prec]; |
213 |
jp = jk; |
214 |
|
215 |
/* determine jx,jv,q0, note that 3>q0 */ |
216 |
jx = nx-1; |
217 |
jv = (e0-3)/24; if(jv<0) jv=0; |
218 |
q0 = e0-24*(jv+1); |
219 |
|
220 |
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
221 |
j = jv-jx; m = jx+jk; |
222 |
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; |
223 |
|
224 |
/* compute q[0],q[1],...q[jk] */ |
225 |
for (i=0;i<=jk;i++) { |
226 |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; |
227 |
} |
228 |
|
229 |
jz = jk; |
230 |
recompute: |
231 |
/* distill q[] into iq[] reversingly */ |
232 |
for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
233 |
fw = (double)((int)(twon24* z)); |
234 |
iq[i] = (int)(z-two24*fw); |
235 |
z = q[j-1]+fw; |
236 |
} |
237 |
|
238 |
/* compute n */ |
239 |
z = fd_scalbn(z,q0); /* actual value of z */ |
240 |
z -= 8.0*fd_floor(z*0.125); /* trim off integer >= 8 */ |
241 |
n = (int) z; |
242 |
z -= (double)n; |
243 |
ih = 0; |
244 |
if(q0>0) { /* need iq[jz-1] to determine n */ |
245 |
i = (iq[jz-1]>>(24-q0)); n += i; |
246 |
iq[jz-1] -= i<<(24-q0); |
247 |
ih = iq[jz-1]>>(23-q0); |
248 |
} |
249 |
else if(q0==0) ih = iq[jz-1]>>23; |
250 |
else if(z>=0.5) ih=2; |
251 |
|
252 |
if(ih>0) { /* q > 0.5 */ |
253 |
n += 1; carry = 0; |
254 |
for(i=0;i<jz ;i++) { /* compute 1-q */ |
255 |
j = iq[i]; |
256 |
if(carry==0) { |
257 |
if(j!=0) { |
258 |
carry = 1; iq[i] = 0x1000000- j; |
259 |
} |
260 |
} else iq[i] = 0xffffff - j; |
261 |
} |
262 |
if(q0>0) { /* rare case: chance is 1 in 12 */ |
263 |
switch(q0) { |
264 |
case 1: |
265 |
iq[jz-1] &= 0x7fffff; break; |
266 |
case 2: |
267 |
iq[jz-1] &= 0x3fffff; break; |
268 |
} |
269 |
} |
270 |
if(ih==2) { |
271 |
z = one - z; |
272 |
if(carry!=0) z -= fd_scalbn(one,q0); |
273 |
} |
274 |
} |
275 |
|
276 |
/* check if recomputation is needed */ |
277 |
if(z==zero) { |
278 |
j = 0; |
279 |
for (i=jz-1;i>=jk;i--) j |= iq[i]; |
280 |
if(j==0) { /* need recomputation */ |
281 |
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
282 |
|
283 |
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
284 |
f[jx+i] = (double) ipio2[jv+i]; |
285 |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
286 |
q[i] = fw; |
287 |
} |
288 |
jz += k; |
289 |
goto recompute; |
290 |
} |
291 |
} |
292 |
|
293 |
/* chop off zero terms */ |
294 |
if(z==0.0) { |
295 |
jz -= 1; q0 -= 24; |
296 |
while(iq[jz]==0) { jz--; q0-=24;} |
297 |
} else { /* break z into 24-bit if necessary */ |
298 |
z = fd_scalbn(z,-q0); |
299 |
if(z>=two24) { |
300 |
fw = (double)((int)(twon24*z)); |
301 |
iq[jz] = (int)(z-two24*fw); |
302 |
jz += 1; q0 += 24; |
303 |
iq[jz] = (int) fw; |
304 |
} else iq[jz] = (int) z ; |
305 |
} |
306 |
|
307 |
/* convert integer "bit" chunk to floating-point value */ |
308 |
fw = fd_scalbn(one,q0); |
309 |
for(i=jz;i>=0;i--) { |
310 |
q[i] = fw*(double)iq[i]; fw*=twon24; |
311 |
} |
312 |
|
313 |
/* compute PIo2[0,...,jp]*q[jz,...,0] */ |
314 |
for(i=jz;i>=0;i--) { |
315 |
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
316 |
fq[jz-i] = fw; |
317 |
} |
318 |
|
319 |
/* compress fq[] into y[] */ |
320 |
switch(prec) { |
321 |
case 0: |
322 |
fw = 0.0; |
323 |
for (i=jz;i>=0;i--) fw += fq[i]; |
324 |
y[0] = (ih==0)? fw: -fw; |
325 |
break; |
326 |
case 1: |
327 |
case 2: |
328 |
fw = 0.0; |
329 |
for (i=jz;i>=0;i--) fw += fq[i]; |
330 |
y[0] = (ih==0)? fw: -fw; |
331 |
fw = fq[0]-fw; |
332 |
for (i=1;i<=jz;i++) fw += fq[i]; |
333 |
y[1] = (ih==0)? fw: -fw; |
334 |
break; |
335 |
case 3: /* painful */ |
336 |
for (i=jz;i>0;i--) { |
337 |
fw = fq[i-1]+fq[i]; |
338 |
fq[i] += fq[i-1]-fw; |
339 |
fq[i-1] = fw; |
340 |
} |
341 |
for (i=jz;i>1;i--) { |
342 |
fw = fq[i-1]+fq[i]; |
343 |
fq[i] += fq[i-1]-fw; |
344 |
fq[i-1] = fw; |
345 |
} |
346 |
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
347 |
if(ih==0) { |
348 |
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
349 |
} else { |
350 |
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
351 |
} |
352 |
} |
353 |
return n&7; |
354 |
} |