1 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
* |
3 |
* ***** BEGIN LICENSE BLOCK ***** |
4 |
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
* |
6 |
* The contents of this file are subject to the Mozilla Public License Version |
7 |
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
* the License. You may obtain a copy of the License at |
9 |
* http://www.mozilla.org/MPL/ |
10 |
* |
11 |
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
* for the specific language governing rights and limitations under the |
14 |
* License. |
15 |
* |
16 |
* The Original Code is Mozilla Communicator client code, released |
17 |
* March 31, 1998. |
18 |
* |
19 |
* The Initial Developer of the Original Code is |
20 |
* Sun Microsystems, Inc. |
21 |
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
* the Initial Developer. All Rights Reserved. |
23 |
* |
24 |
* Contributor(s): |
25 |
* |
26 |
* Alternatively, the contents of this file may be used under the terms of |
27 |
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
* of those above. If you wish to allow use of your version of this file only |
31 |
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
* use your version of this file under the terms of the MPL, indicate your |
33 |
* decision by deleting the provisions above and replace them with the notice |
34 |
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
* the provisions above, a recipient may use your version of this file under |
36 |
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
* |
38 |
* ***** END LICENSE BLOCK ***** */ |
39 |
|
40 |
/* @(#)k_tan.c 1.3 95/01/18 */ |
41 |
/* |
42 |
* ==================================================== |
43 |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
44 |
* |
45 |
* Developed at SunSoft, a Sun Microsystems, Inc. business. |
46 |
* Permission to use, copy, modify, and distribute this |
47 |
* software is freely granted, provided that this notice |
48 |
* is preserved. |
49 |
* ==================================================== |
50 |
*/ |
51 |
|
52 |
/* __kernel_tan( x, y, k ) |
53 |
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
54 |
* Input x is assumed to be bounded by ~pi/4 in magnitude. |
55 |
* Input y is the tail of x. |
56 |
* Input k indicates whether tan (if k=1) or |
57 |
* -1/tan (if k= -1) is returned. |
58 |
* |
59 |
* Algorithm |
60 |
* 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
61 |
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
62 |
* 3. tan(x) is approximated by a odd polynomial of degree 27 on |
63 |
* [0,0.67434] |
64 |
* 3 27 |
65 |
* tan(x) ~ x + T1*x + ... + T13*x |
66 |
* where |
67 |
* |
68 |
* |tan(x) 2 4 26 | -59.2 |
69 |
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
70 |
* | x | |
71 |
* |
72 |
* Note: tan(x+y) = tan(x) + tan'(x)*y |
73 |
* ~ tan(x) + (1+x*x)*y |
74 |
* Therefore, for better accuracy in computing tan(x+y), let |
75 |
* 3 2 2 2 2 |
76 |
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
77 |
* then |
78 |
* 3 2 |
79 |
* tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
80 |
* |
81 |
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
82 |
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
83 |
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
84 |
*/ |
85 |
|
86 |
#include "fdlibm.h" |
87 |
#ifdef __STDC__ |
88 |
static const double |
89 |
#else |
90 |
static double |
91 |
#endif |
92 |
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
93 |
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
94 |
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ |
95 |
T[] = { |
96 |
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ |
97 |
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ |
98 |
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ |
99 |
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ |
100 |
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ |
101 |
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ |
102 |
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ |
103 |
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ |
104 |
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ |
105 |
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ |
106 |
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ |
107 |
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ |
108 |
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ |
109 |
}; |
110 |
|
111 |
#ifdef __STDC__ |
112 |
double __kernel_tan(double x, double y, int iy) |
113 |
#else |
114 |
double __kernel_tan(x, y, iy) |
115 |
double x,y; int iy; |
116 |
#endif |
117 |
{ |
118 |
fd_twoints u; |
119 |
double z,r,v,w,s; |
120 |
int ix,hx; |
121 |
u.d = x; |
122 |
hx = __HI(u); /* high word of x */ |
123 |
ix = hx&0x7fffffff; /* high word of |x| */ |
124 |
if(ix<0x3e300000) /* x < 2**-28 */ |
125 |
{if((int)x==0) { /* generate inexact */ |
126 |
u.d =x; |
127 |
if(((ix|__LO(u))|(iy+1))==0) return one/fd_fabs(x); |
128 |
else return (iy==1)? x: -one/x; |
129 |
} |
130 |
} |
131 |
if(ix>=0x3FE59428) { /* |x|>=0.6744 */ |
132 |
if(hx<0) {x = -x; y = -y;} |
133 |
z = pio4-x; |
134 |
w = pio4lo-y; |
135 |
x = z+w; y = 0.0; |
136 |
} |
137 |
z = x*x; |
138 |
w = z*z; |
139 |
/* Break x^5*(T[1]+x^2*T[2]+...) into |
140 |
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
141 |
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
142 |
*/ |
143 |
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
144 |
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
145 |
s = z*x; |
146 |
r = y + z*(s*(r+v)+y); |
147 |
r += T[0]*s; |
148 |
w = x+r; |
149 |
if(ix>=0x3FE59428) { |
150 |
v = (double)iy; |
151 |
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); |
152 |
} |
153 |
if(iy==1) return w; |
154 |
else { /* if allow error up to 2 ulp, |
155 |
simply return -1.0/(x+r) here */ |
156 |
/* compute -1.0/(x+r) accurately */ |
157 |
double a,t; |
158 |
z = w; |
159 |
u.d = z; |
160 |
__LO(u) = 0; |
161 |
z = u.d; |
162 |
v = r-(z - x); /* z+v = r+x */ |
163 |
t = a = -1.0/w; /* a = -1.0/w */ |
164 |
u.d = t; |
165 |
__LO(u) = 0; |
166 |
t = u.d; |
167 |
s = 1.0+t*z; |
168 |
return t+a*(s+t*v); |
169 |
} |
170 |
} |