1 |
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
2 |
* |
3 |
* ***** BEGIN LICENSE BLOCK ***** |
4 |
* Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
5 |
* |
6 |
* The contents of this file are subject to the Mozilla Public License Version |
7 |
* 1.1 (the "License"); you may not use this file except in compliance with |
8 |
* the License. You may obtain a copy of the License at |
9 |
* http://www.mozilla.org/MPL/ |
10 |
* |
11 |
* Software distributed under the License is distributed on an "AS IS" basis, |
12 |
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
13 |
* for the specific language governing rights and limitations under the |
14 |
* License. |
15 |
* |
16 |
* The Original Code is Mozilla Communicator client code, released |
17 |
* March 31, 1998. |
18 |
* |
19 |
* The Initial Developer of the Original Code is |
20 |
* Sun Microsystems, Inc. |
21 |
* Portions created by the Initial Developer are Copyright (C) 1998 |
22 |
* the Initial Developer. All Rights Reserved. |
23 |
* |
24 |
* Contributor(s): |
25 |
* |
26 |
* Alternatively, the contents of this file may be used under the terms of |
27 |
* either of the GNU General Public License Version 2 or later (the "GPL"), |
28 |
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
29 |
* in which case the provisions of the GPL or the LGPL are applicable instead |
30 |
* of those above. If you wish to allow use of your version of this file only |
31 |
* under the terms of either the GPL or the LGPL, and not to allow others to |
32 |
* use your version of this file under the terms of the MPL, indicate your |
33 |
* decision by deleting the provisions above and replace them with the notice |
34 |
* and other provisions required by the GPL or the LGPL. If you do not delete |
35 |
* the provisions above, a recipient may use your version of this file under |
36 |
* the terms of any one of the MPL, the GPL or the LGPL. |
37 |
* |
38 |
* ***** END LICENSE BLOCK ***** */ |
39 |
|
40 |
/* @(#)s_expm1.c 1.3 95/01/18 */ |
41 |
/* |
42 |
* ==================================================== |
43 |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
44 |
* |
45 |
* Developed at SunSoft, a Sun Microsystems, Inc. business. |
46 |
* Permission to use, copy, modify, and distribute this |
47 |
* software is freely granted, provided that this notice |
48 |
* is preserved. |
49 |
* ==================================================== |
50 |
*/ |
51 |
|
52 |
/* expm1(x) |
53 |
* Returns exp(x)-1, the exponential of x minus 1. |
54 |
* |
55 |
* Method |
56 |
* 1. Argument reduction: |
57 |
* Given x, find r and integer k such that |
58 |
* |
59 |
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
60 |
* |
61 |
* Here a correction term c will be computed to compensate |
62 |
* the error in r when rounded to a floating-point number. |
63 |
* |
64 |
* 2. Approximating expm1(r) by a special rational function on |
65 |
* the interval [0,0.34658]: |
66 |
* Since |
67 |
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
68 |
* we define R1(r*r) by |
69 |
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
70 |
* That is, |
71 |
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
72 |
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
73 |
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
74 |
* We use a special Reme algorithm on [0,0.347] to generate |
75 |
* a polynomial of degree 5 in r*r to approximate R1. The |
76 |
* maximum error of this polynomial approximation is bounded |
77 |
* by 2**-61. In other words, |
78 |
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
79 |
* where Q1 = -1.6666666666666567384E-2, |
80 |
* Q2 = 3.9682539681370365873E-4, |
81 |
* Q3 = -9.9206344733435987357E-6, |
82 |
* Q4 = 2.5051361420808517002E-7, |
83 |
* Q5 = -6.2843505682382617102E-9; |
84 |
* (where z=r*r, and the values of Q1 to Q5 are listed below) |
85 |
* with error bounded by |
86 |
* | 5 | -61 |
87 |
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
88 |
* | | |
89 |
* |
90 |
* expm1(r) = exp(r)-1 is then computed by the following |
91 |
* specific way which minimize the accumulation rounding error: |
92 |
* 2 3 |
93 |
* r r [ 3 - (R1 + R1*r/2) ] |
94 |
* expm1(r) = r + --- + --- * [--------------------] |
95 |
* 2 2 [ 6 - r*(3 - R1*r/2) ] |
96 |
* |
97 |
* To compensate the error in the argument reduction, we use |
98 |
* expm1(r+c) = expm1(r) + c + expm1(r)*c |
99 |
* ~ expm1(r) + c + r*c |
100 |
* Thus c+r*c will be added in as the correction terms for |
101 |
* expm1(r+c). Now rearrange the term to avoid optimization |
102 |
* screw up: |
103 |
* ( 2 2 ) |
104 |
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
105 |
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
106 |
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
107 |
* ( ) |
108 |
* |
109 |
* = r - E |
110 |
* 3. Scale back to obtain expm1(x): |
111 |
* From step 1, we have |
112 |
* expm1(x) = either 2^k*[expm1(r)+1] - 1 |
113 |
* = or 2^k*[expm1(r) + (1-2^-k)] |
114 |
* 4. Implementation notes: |
115 |
* (A). To save one multiplication, we scale the coefficient Qi |
116 |
* to Qi*2^i, and replace z by (x^2)/2. |
117 |
* (B). To achieve maximum accuracy, we compute expm1(x) by |
118 |
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
119 |
* (ii) if k=0, return r-E |
120 |
* (iii) if k=-1, return 0.5*(r-E)-0.5 |
121 |
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
122 |
* else return 1.0+2.0*(r-E); |
123 |
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
124 |
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
125 |
* (vii) return 2^k(1-((E+2^-k)-r)) |
126 |
* |
127 |
* Special cases: |
128 |
* expm1(INF) is INF, expm1(NaN) is NaN; |
129 |
* expm1(-INF) is -1, and |
130 |
* for finite argument, only expm1(0)=0 is exact. |
131 |
* |
132 |
* Accuracy: |
133 |
* according to an error analysis, the error is always less than |
134 |
* 1 ulp (unit in the last place). |
135 |
* |
136 |
* Misc. info. |
137 |
* For IEEE double |
138 |
* if x > 7.09782712893383973096e+02 then expm1(x) overflow |
139 |
* |
140 |
* Constants: |
141 |
* The hexadecimal values are the intended ones for the following |
142 |
* constants. The decimal values may be used, provided that the |
143 |
* compiler will convert from decimal to binary accurately enough |
144 |
* to produce the hexadecimal values shown. |
145 |
*/ |
146 |
|
147 |
#include "fdlibm.h" |
148 |
|
149 |
#ifdef __STDC__ |
150 |
static const double |
151 |
#else |
152 |
static double |
153 |
#endif |
154 |
one = 1.0, |
155 |
really_big = 1.0e+300, |
156 |
tiny = 1.0e-300, |
157 |
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ |
158 |
ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ |
159 |
ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ |
160 |
invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ |
161 |
/* scaled coefficients related to expm1 */ |
162 |
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ |
163 |
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ |
164 |
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ |
165 |
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ |
166 |
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
167 |
|
168 |
#ifdef __STDC__ |
169 |
double fd_expm1(double x) |
170 |
#else |
171 |
double fd_expm1(x) |
172 |
double x; |
173 |
#endif |
174 |
{ |
175 |
fd_twoints u; |
176 |
double y,hi,lo,c,t,e,hxs,hfx,r1; |
177 |
int k,xsb; |
178 |
unsigned hx; |
179 |
|
180 |
u.d = x; |
181 |
hx = __HI(u); /* high word of x */ |
182 |
xsb = hx&0x80000000; /* sign bit of x */ |
183 |
if(xsb==0) y=x; else y= -x; /* y = |x| */ |
184 |
hx &= 0x7fffffff; /* high word of |x| */ |
185 |
|
186 |
/* filter out huge and non-finite argument */ |
187 |
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ |
188 |
if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
189 |
if(hx>=0x7ff00000) { |
190 |
u.d = x; |
191 |
if(((hx&0xfffff)|__LO(u))!=0) |
192 |
return x+x; /* NaN */ |
193 |
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ |
194 |
} |
195 |
if(x > o_threshold) return really_big*really_big; /* overflow */ |
196 |
} |
197 |
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ |
198 |
if(x+tiny<0.0) /* raise inexact */ |
199 |
return tiny-one; /* return -1 */ |
200 |
} |
201 |
} |
202 |
|
203 |
/* argument reduction */ |
204 |
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
205 |
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
206 |
if(xsb==0) |
207 |
{hi = x - ln2_hi; lo = ln2_lo; k = 1;} |
208 |
else |
209 |
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;} |
210 |
} else { |
211 |
k = (int)(invln2*x+((xsb==0)?0.5:-0.5)); |
212 |
t = k; |
213 |
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ |
214 |
lo = t*ln2_lo; |
215 |
} |
216 |
x = hi - lo; |
217 |
c = (hi-x)-lo; |
218 |
} |
219 |
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ |
220 |
t = really_big+x; /* return x with inexact flags when x!=0 */ |
221 |
return x - (t-(really_big+x)); |
222 |
} |
223 |
else k = 0; |
224 |
|
225 |
/* x is now in primary range */ |
226 |
hfx = 0.5*x; |
227 |
hxs = x*hfx; |
228 |
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); |
229 |
t = 3.0-r1*hfx; |
230 |
e = hxs*((r1-t)/(6.0 - x*t)); |
231 |
if(k==0) return x - (x*e-hxs); /* c is 0 */ |
232 |
else { |
233 |
e = (x*(e-c)-c); |
234 |
e -= hxs; |
235 |
if(k== -1) return 0.5*(x-e)-0.5; |
236 |
if(k==1) |
237 |
if(x < -0.25) return -2.0*(e-(x+0.5)); |
238 |
else return one+2.0*(x-e); |
239 |
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ |
240 |
y = one-(e-x); |
241 |
u.d = y; |
242 |
__HI(u) += (k<<20); /* add k to y's exponent */ |
243 |
y = u.d; |
244 |
return y-one; |
245 |
} |
246 |
t = one; |
247 |
if(k<20) { |
248 |
u.d = t; |
249 |
__HI(u) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */ |
250 |
t = u.d; |
251 |
y = t-(e-x); |
252 |
u.d = y; |
253 |
__HI(u) += (k<<20); /* add k to y's exponent */ |
254 |
y = u.d; |
255 |
} else { |
256 |
u.d = t; |
257 |
__HI(u) = ((0x3ff-k)<<20); /* 2^-k */ |
258 |
t = u.d; |
259 |
y = x-(e+t); |
260 |
y += one; |
261 |
u.d = y; |
262 |
__HI(u) += (k<<20); /* add k to y's exponent */ |
263 |
y = u.d; |
264 |
} |
265 |
} |
266 |
return y; |
267 |
} |